scholarly journals The influence of uncertain loading on topology-optimized designs

2021 ◽  
Author(s):  
Philipp Hofer ◽  
Erich Wehrle

The design of structures using topology optimization can improve the structural performance and save material, in turn reducing costs. Using a framework of large-scale, three-dimensional topology optimization implemented by the authors in an open-source multiphysical software, we investigate the influence of uncertain loading on the optimized design. Direct differentiation is used to reveal the relationship between displacements and applied force, giving an efficient and effective tool to postprocess optimized topologies. The developed methodology for the assessment of the sensitivity with respect to applied forces is explored using two three-dimensional examples: the classic MBB cantilever and a cableway pylon. The advantages and limitations of this method are discussed.

2021 ◽  
pp. 1-15
Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization method for designing large-scale, 3D variable-axial lightweight composite structures subject to multiple load cases. The computational challenges associated with large-scale 3D anisotropic topology optimization with extremely low volume fraction are addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representations such as Euler angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward a fully-automated design synthesis.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Wei Zhang ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.


2020 ◽  
Vol 117 (40) ◽  
pp. 24679-24690
Author(s):  
Ishika Saha ◽  
Eric K. Dang ◽  
Dennis Svatunek ◽  
Kendall N. Houk ◽  
Patrick G. Harran

Peptidomimetic macrocycles have the potential to regulate challenging therapeutic targets. Structures of this type having precise shapes and drug-like character are particularly coveted, but are relatively difficult to synthesize. Our laboratory has developed robust methods that integrate small-peptide units into designed scaffolds. These methods create macrocycles and embed condensed heterocycles to diversify outcomes and improve pharmacological properties. The hypothetical scope of the methodology is vast and far outpaces the capacity of our experimental format. We now describe a computational rendering of our methodology that creates an in silico three-dimensional library of composite peptidic macrocycles. Our open-source platform, CPMG (Composite Peptide Macrocycle Generator), has algorithmically generated a library of 2,020,794,198 macrocycles that can result from the multistep reaction sequences we have developed. Structures are generated based on predicted site reactivity and filtered on the basis of physical and three-dimensional properties to identify maximally diverse compounds for prioritization. For conformational analyses, we also introduce ConfBuster++, an RDKit port of the open-source software ConfBuster, which allows facile integration with CPMG and ready parallelization for better scalability. Our approach deeply probes ligand space accessible via our synthetic methodology and provides a resource for large-scale virtual screening.


1949 ◽  
Vol 22 (2) ◽  
pp. 494-517 ◽  
Author(s):  
John A. Yanko

Abstract A large-scale precise fractionation of GR-S (X-55) was carried out at 25° C, using a fractional precipitation technique. Nine fractions, each weighing approximately 150 grams and comprising about 11 per cent by weight of the original unfractionated sample, were obtained, with number-average molecular weights varying from 4000 to 1,650,000. High molecular fractions undergo gelation rapidly, even when dried in the absence of light at reduced pressure, and the higher the molecular weight of the fraction, the greater the amount of gel formed. Compared to unfractionated butadiene-styrene copolymers of similar gel contents, the gel portions of the higher molecular fractions had unusually high swelling indices, indicating qualitatively that the average molecular weights between points of effective cross-linking in the three-dimensional gel structure were higher than those found in the past in unfractionated samples of similar gel contents. Through the concentration range studied, the intrinsic viscosity values varied as a straight-line function of the concentration terms for all the fractions. However, the negative slopes of these lines increased as the molecular weight of the fraction increased, demonstrating the greater dependence of the intrinsic viscosity values of the higher molecular fractions on the concentration variable. The relationship between number-average molecular weight, as determined by osmometric measurements, and limiting intrinsic viscosity of the GR-S fractions is given by the equation: [η]0=5.4×10−4 M0.66, which is similar to that obtained by French and Ewart. The μi values calculated from the equation of Huggins were essentially the same (0.35) through the molecular range 12,400 to 723,000.


2013 ◽  
Vol 275-277 ◽  
pp. 562-566 ◽  
Author(s):  
Bing Zhang ◽  
Xiao Feng Liu ◽  
Chao Bi

As an important component of large-scale extruder system for polymer material, Die-plate can be regarded as the final determinant for pelletization uniformity. Polymer melt was shaped in shaping channels and extruded from die-holes from Die-plate and then be diced. The design of shaping channels directly influences the uniformity for polymer-melt extrusion pressure and extrusion velocity of different die holes. In this paper, a three-dimensional flow model for polymer flow in Die-plate channel was presented, and then finite element simulation was used to analyze the distribution of extrusion velocity in each die-hole. Based on simulation result, a BP neural network model was applied to analyze the relationship between geometry factors of Die-plate, such as length of shaping channels, die hole extrusion velocity distribution, and extrusion uniformity. This optimization method can be used in the design of Die-plate to improve effect and quality of actual polymer production and processing.


Author(s):  
Miguel O. Bernabeu ◽  
Rafel Bordas ◽  
Pras Pathmanathan ◽  
Joe Pitt-Francis ◽  
Jonathan Cooper ◽  
...  

Recent work has described the software engineering and computational infrastructure that has been set up as part of the Cancer, Heart and Soft Tissue Environment (C haste ) project. C haste is an open source software package that currently has heart and cancer modelling functionality. This software has been written using a programming paradigm imported from the commercial sector and has resulted in a code that has been subject to a far more rigorous testing procedure than that is usual in this field. In this paper, we explain how new functionality may be incorporated into C haste . Whiteley has developed a numerical algorithm for solving the bidomain equations that uses the multi-scale (MS) nature of the physiology modelled to enhance computational efficiency. Using a simple geometry in two dimensions and a purpose-built code, this algorithm was reported to give an increase in computational efficiency of more than two orders of magnitude. In this paper, we begin by reviewing numerical methods currently in use for solving the bidomain equations, explaining how these methods may be developed to use the MS algorithm discussed above. We then demonstrate the use of this algorithm within the C haste framework for solving the monodomain and bidomain equations in a three-dimensional realistic heart geometry. Finally, we discuss how C haste may be developed to include new physiological functionality—such as modelling a beating heart and fluid flow in the heart—and how new algorithms aimed at increasing the efficiency of the code may be incorporated.


2006 ◽  
Vol 110 ◽  
pp. 133-142 ◽  
Author(s):  
Shinobu Yoshimura

The ADVENTURE project started as one of the research projects in the "Computational Science & Engineering" field selected for the "Research for the Future" Program sponsored by the Japan Society for the Promotion of Science during 1997-2002. Since March 2002, the project has continued as an independent project. In the project we have been developing an advanced general-purpose computational mechanics system, named ADVENTURE, running in various kinds of parallel and ditributed environments. The system is designed to be able to analyze a three-dimensional finite element model of arbitrary shape with 10-100 million DOFs mesh, and additionally to enable parametric and non-parametric shape optimization. The first version of the system has been released from the project website as open source software since March, 2002. 2,049 registered users in academia and industries have downloaded 12,827 modules and been using them, while one company has developed and released its commercial version named ADVENTUREcluster. The ADVENTURE system has been successfully implemented in various types of parallel and distributed environments including PC clusters, massively parallel processers such as Hitachi SR8000/MPP and the Earth Simulator, and Grid environments such as ITBL (IT-based Laboratory). The system has been successfully applied to solve various real world problems such as response of a full scale nuclear pressure vessel model and thermoelastic deformation of full scale electric mounting board of a mobile PC.


Sign in / Sign up

Export Citation Format

Share Document