Implementation of Thermomechanical Multiphysics in a Large-Scale Three-Dimensional Topology Optimization Code

2021 ◽  
Author(s):  
Joel Najmon ◽  
Tong Wu ◽  
Andres Tovar
2021 ◽  
pp. 1-15
Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization method for designing large-scale, 3D variable-axial lightweight composite structures subject to multiple load cases. The computational challenges associated with large-scale 3D anisotropic topology optimization with extremely low volume fraction are addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representations such as Euler angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward a fully-automated design synthesis.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Wei Zhang ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.


2021 ◽  
Author(s):  
Philipp Hofer ◽  
Erich Wehrle

The design of structures using topology optimization can improve the structural performance and save material, in turn reducing costs. Using a framework of large-scale, three-dimensional topology optimization implemented by the authors in an open-source multiphysical software, we investigate the influence of uncertain loading on the optimized design. Direct differentiation is used to reveal the relationship between displacements and applied force, giving an efficient and effective tool to postprocess optimized topologies. The developed methodology for the assessment of the sensitivity with respect to applied forces is explored using two three-dimensional examples: the classic MBB cantilever and a cableway pylon. The advantages and limitations of this method are discussed.


Author(s):  
Sicheng Sun ◽  
Jaal Ghandhi ◽  
Xiaoping Qian

Abstract Topology optimization (TO) was conducted for three dimensional static fluid mixers. The problem is optimized using the weakly coupled Navier-Stokes equation at low Reynolds number (Re ≤ 1) and a convection-diffusion equation. The domain was discretized with up to 10 million cells. The optimizations were run with 1024 to 2048 CPUs on a national supercomputer. For a mixer in a square cross-section channel, the mixing was improved by 83% for a modest 2.5 times higher pressure drop compared with the open straight channel. For a cylindrical cross-section tee arrangement, the mixing improved by 91% with a 2.5 times higher pressure drop compared to the straight channel.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 217
Author(s):  
Peter Dørffler Ladegaard Jensen ◽  
Fengwen Wang ◽  
Ignazio Dimino ◽  
Ole Sigmund

This work proposes a systematic topology optimization approach for simultaneously designing the morphing functionality and actuation in three-dimensional wing structures. The actuation was modeled by a linear-strain-based expansion in the actuation material. A three-phase material model was employed to represent structural and actuating materials and voids. To ensure both structural stiffness with respect to aerodynamic loading and morphing capabilities, the optimization problem was formulated to minimize structural compliance, while the morphing functionality was enforced by constraining a morphing error between the actual and target wing shape. Moreover, a feature-mapping approach was utilized to constrain and simplify the actuator geometries. A trailing edge wing section was designed to validate the proposed optimization approach. Numerical results demonstrated that three-dimensional optimized wing sections utilize a more advanced structural layout to enhance structural performance while keeping the morphing functionality better than two-dimensional wing ribs. The work presents the first step towards the systematic design of three-dimensional morphing wing sections.


Author(s):  
Giuseppe C. A. DeRose ◽  
Alejandro R. Díaz

Abstract A new solution strategy for topology optimization in 3D elasticity is discussed. This solution strategy uses principles from hierarchical data structures and image analysis to reduce the computational resources necessary to solve large-scale topology optimization problems. The savings in computational resources result from successive use of increasingly detailed hierarchical models starting from a coarse approximation. These models, stored using octree data structures, are used to determine the finite element discretization at a given hierarchy. Through the use of the hierarchical models, large-scale topology optimization problems in 3D elasticity may be solved on desktop workstations.


2021 ◽  
Author(s):  
Kazuhiro Saitou ◽  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Wei Zhang ◽  
Enpei Zhao

Sign in / Sign up

Export Citation Format

Share Document