Creating an AI-Conversational Agent in Psychotherapy: Recognizing User Intents

2021 ◽  
Author(s):  
Olga Troitskaya ◽  
Andrey Zakharov

In recent years there has been a growth of psychological chatbots performing important functions from checking symptoms to providing psychoeducation and guiding self-help exercises. Technologically these chatbots are based on traditional decision-tree algorithms with limited keyword recognition. A key challenge to the development of conversational artificial intelligence is intent recognition or understanding the goal that the user wants to accomplish. The user query on psychological topic is often emotional, highly contextual and non goal-oriented, and therefore may contain vague, mixed or multiple intents. In this study we made an attempt to identify and categorize user intents with relation to psychological topics using the database of 43 000 messages from iCognito Anti-depression chatbot. We have identified 24 classes of user intents that can be grouped into larger categories, such as: a) intents to improve emotional state; b) intents to improve interpersonal relations; c) intents to improve physical condition; d) intents to solve practical problems; e) intents to make a decision; f) intents to harm oneself or commit suicide; g) intent to blame or criticize oneself. This classification may be used for the development of conversational artificial intelligence in the field of psychotherapy.

2021 ◽  
Author(s):  
Olga iCognito group ◽  
Andrey Zakharov

BACKGROUND In recent years there has been a growth of psychological chatbots performing important functions from checking symptoms to providing psychoeducation and guiding self-help exercises. Technologically these chatbots are based on traditional decision-tree algorithms with limited keyword recognition. A key challenge to the development of conversational artificial intelligence is intent recognition or understanding the goal that the user wants to accomplish. The user query on psychological topic is often emotional, highly contextual and non goal-oriented, and therefore may contain vague, mixed or multiple intents. OBJECTIVE In this study we attempt to identify and categorize user intents with relation to psychological topics. METHODS We collected a dataset of 43 000 logs from the iCognito Anti-depression chatbot which consists of user answers to the chatbot questions about the reason of their emotional distress. The data was labeled manually. The BERT model was used for classification. RESULTS We have identified 24 classes of user intents that can be grouped into larger categories, such as: a) intents to improve emotional state; b) intents to improve interpersonal relations; c) intents to improve physical condition; d) intents to solve practical problems; e) intents to make a decision; f) intents to harm oneself or commit suicide; g) intent to blame or criticize oneself. CONCLUSIONS This classification may be used for the development of conversational artificial intelligence in the field of psychotherapy.


AI Magazine ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 67-78
Author(s):  
Guy Barash ◽  
Mauricio Castillo-Effen ◽  
Niyati Chhaya ◽  
Peter Clark ◽  
Huáscar Espinoza ◽  
...  

The workshop program of the Association for the Advancement of Artificial Intelligence’s 33rd Conference on Artificial Intelligence (AAAI-19) was held in Honolulu, Hawaii, on Sunday and Monday, January 27–28, 2019. There were fifteen workshops in the program: Affective Content Analysis: Modeling Affect-in-Action, Agile Robotics for Industrial Automation Competition, Artificial Intelligence for Cyber Security, Artificial Intelligence Safety, Dialog System Technology Challenge, Engineering Dependable and Secure Machine Learning Systems, Games and Simulations for Artificial Intelligence, Health Intelligence, Knowledge Extraction from Games, Network Interpretability for Deep Learning, Plan, Activity, and Intent Recognition, Reasoning and Learning for Human-Machine Dialogues, Reasoning for Complex Question Answering, Recommender Systems Meet Natural Language Processing, Reinforcement Learning in Games, and Reproducible AI. This report contains brief summaries of the all the workshops that were held.


2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


Author(s):  
Nilesh Ade ◽  
Noor Quddus ◽  
Trent Parker ◽  
S.Camille Peres

One of the major implications of Industry 4.0 will be the application of digital procedures in process industries. Digital procedures are procedures that are accessed through a smart gadget such as a tablet or a phone. However, like paper-based procedures their usability is limited by their access. The issue of accessibility is magnified in tasks such as loading a hopper car with plastic pellets wherein the operators typically place the procedure at a safe distance from the worksite. This drawback can be tackled in the case of digital procedures using artificial intelligence-based voice enabled conversational agent (chatbot). As a part of this study, we have developed a chatbot for assisting digital procedure adherence. The chatbot is trained using the possible set of queries from the operator and text from the digital procedures through deep learning and provides responses using natural language generation. The testing of the chatbot is performed using a simulated conversation with an operator performing the task of loading a hopper car.


2021 ◽  
Author(s):  
İsmail Can Dikmen ◽  
Teoman Karadağ

Abstract Today, the storage of electrical energy is one of the most important technical challenges. The increasing number of high capacity, high-power applications, especially electric vehicles and grid energy storage, points to the fact that we will be faced with a large amount of batteries that will need to be recycled and separated in the near future. An alternative method to the currently used methods for separating these batteries according to their chemistry is discussed in this study. This method can be applied even on integrated circuits due to its ease of implementation and low operational cost. In this respect, it is also possible to use it in multi-chemistry battery management systems to detect the chemistry of the connected battery. For the implementation of the method, the batteries are connected to two different loads alternately. In this way, current and voltage values ​​are measured for two different loads without allowing the battery to relax. The obtained data is pre-processed with a separation function developed based on statistical significance. In machine learning algorithms, artificial neural network and decision tree algorithms are trained with processed data and used to determine battery chemistry with 100% accuracy. The efficiency and ease of implementation of the decision tree algorithm in such a categorization method are presented comparatively.


Author(s):  
Chao Sun ◽  
David Stirling

Decision tree algorithms were not traditionally considered for sequential data classification, mostly because feature generation needs to be integrated with the modelling procedure in order to avoid a localisation problem. This paper presents an Event Group Based Classification (EGBC) framework that utilises an X-of-N (XoN) decision tree algorithm to avoid the feature generation issue during the classification on sequential data. In this method, features are generated independently based on the characteristics of the sequential data. Subsequently an XoN decision tree is utilised to select and aggregate useful features from various temporal and other dimensions (as event groups) for optimised classification. This leads the EGBC framework to be adaptive to sequential data of differing dimensions, robust to missing data and accommodating to either numeric or nominal data types. The comparatively improved outcomes from applying this method are demonstrated on two distinct areas – a text based language identification task, as well as a honeybee dance behaviour classification problem. A further motivating industrial problem – hot metal temperature prediction, is further considered with the EGBC framework in order to address significant real-world demands.


Sign in / Sign up

Export Citation Format

Share Document