Decision Tree and Boosting Techniques in Artificial Intelligence Based Automated Valuation Models (AI-AVM)

2020 ◽  
Author(s):  
Tien Foo Sing ◽  
Jingye Yang ◽  
Shi-Ming Yu
2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


2021 ◽  
Author(s):  
Nicodemus Nzoka Maingi ◽  
Ismail Ateya Lukandu ◽  
Matilu MWAU

Abstract BackgroundThe disease outbreak management operations of most countries (notably Kenya) present numerous novel ideas of how to best make use of notifiable disease data to effect proactive interventions. Notifiable disease data is reported, aggregated and variously consumed. Over the years, there has been a deluge of notifiable disease data and the challenge for notifiable disease data management entities has been how to objectively and dynamically aggregate such data in a manner such as to enable the efficient consumption to inform relevant mitigation measures. Various models have been explored, tried and tested with varying results; some purely mathematical and statistical, others quasi-mathematical cum software model-driven.MethodsOne of the tools that has been explored is Artificial Intelligence (AI). AI is a technique that enables computers to intelligently perform and mimic actions and tasks usually reserved for human experts. AI presents a great opportunity for redefining how the data is more meaningfully processed and packaged. This research explores AI’s Machine Learning (ML) theory as a differentiator in the crunching of notifiable disease data and adding perspective. An algorithm has been designed to test different notifiable disease outbreak data cases, a shift to managing disease outbreaks via the symptoms they generally manifest. Each notifiable disease is broken down into a set of symptoms, dubbed symptom burden variables, and consequently categorized into eight clusters: Bodily, Gastro-Intestinal, Muscular, Nasal, Pain, Respiratory, Skin, and finally, Other Symptom Clusters. ML’s decision tree theory has been utilized in the determination of the entropies and information gains of each symptom cluster based on select test data sets.ResultsOnce the entropies and information gains have been determined, the information gain variables are then ranked in descending order; from the variables with the highest information gains to those with the lowest, thereby giving a clear-cut criteria of how the variables are ordered. The ranked variables are then utilized in the construction of a binary decision tree, which graphically and structurally represents the variables. Should any variables have a tie in the information gain rankings, such are given equal importance in the construction of the binary decision-tree. From the presented data, the computed information gains are ordered as; Gastro-Intestinal, Bodily, Pain, Skin, Respiratory, Others. Muscular, and finally Nasal Symptoms respectively. The corresponding binary decision tree is then constructed.ConclusionsThe algorithm successfully singles out the disease burden variable(s) that are most critical as the point of diagnostic focus to enable the relevant authorities take the necessary, informed interventions. This algorithm provides a good basis for a country’s localized diagnostic activities driven by data from the reported notifiable disease cases. The algorithm presents a dynamic mechanism that can be used to analyze and aggregate any notifiable disease data set, meaning that the algorithm is not fixated or locked on any particular data set.


2021 ◽  
Author(s):  
Olga Troitskaya ◽  
Andrey Zakharov

In recent years there has been a growth of psychological chatbots performing important functions from checking symptoms to providing psychoeducation and guiding self-help exercises. Technologically these chatbots are based on traditional decision-tree algorithms with limited keyword recognition. A key challenge to the development of conversational artificial intelligence is intent recognition or understanding the goal that the user wants to accomplish. The user query on psychological topic is often emotional, highly contextual and non goal-oriented, and therefore may contain vague, mixed or multiple intents. In this study we made an attempt to identify and categorize user intents with relation to psychological topics using the database of 43 000 messages from iCognito Anti-depression chatbot. We have identified 24 classes of user intents that can be grouped into larger categories, such as: a) intents to improve emotional state; b) intents to improve interpersonal relations; c) intents to improve physical condition; d) intents to solve practical problems; e) intents to make a decision; f) intents to harm oneself or commit suicide; g) intent to blame or criticize oneself. This classification may be used for the development of conversational artificial intelligence in the field of psychotherapy.


1994 ◽  
Vol 74 ◽  
pp. 1-11 ◽  
Author(s):  
Anne Marshall ◽  
Garry Marshall

SummaryA number of techniques capable of generating descriptions of data have been developed in the area of Artificial Intelligence. Their suitability for use with a data set compiled to record the details of Anglo-Saxon structures in Britain is considered. An appropriate method which describes the data by means of decision trees is chosen and, after some adaptation, is used to generate descriptions of this data in the form of decision trees. The resulting descriptions compare favourably with interpretations obtained by archaeological analysis.


2019 ◽  
pp. 1-18
Author(s):  
José Guillermo Contreras-Frías ◽  
María Jesús Segovia-Vargas ◽  
María del Mar Camacho-Miñano ◽  
Marta Miranda-García

The objective of this study is to identify both micro and macroeconomic variables that allow us to analyze in advance the probabilities of business failure. The selected sample contains all the listed companies of the IPC index of Mexico, IBEX-35 of Spain and EURO STOXX50 of Europe for a time horizon of 5 years. Our contribution lies in the empirical testing of the results by two different techniques: general estimating equations (a parametric technique) and a decision tree (a non-parametric technique based on artificial intelligence). The obtained results show that the factors of liquidity, indebtedness and profitability are the ones that affect the prediction of corporatebankruptcy for listed companies, but not the macroeconomic ones, since the macroeconomic peculiarities of each country are diluted by the importance of the economic-financial structure of each company.


2021 ◽  
Vol 7 (1) ◽  
pp. 304-313
Author(s):  
Edyta Kuk ◽  
Michał Kuk ◽  
Damian Janiga ◽  
Paweł Wojnarowski ◽  
Jerzy Stopa

Artificial Intelligence plays an increasingly important role in many industrial applications as it has great potential for solving complex engineering problems. One of such applications is the optimization of petroleum reservoirs production. It is crucial to produce hydrocarbons efficiently as their geological resources are limited. From an economic point of view, optimization of hydrocarbon well control is an important factor as it affects the whole market. The solution proposed in this paper is based on state-of-the-art artificial intelligence methods, optimal control, and decision tree theory. The proposed idea is to apply a novel temporal clustering algorithm utilizing an autoencoder for temporal dimensionality reduction and a temporal clustering layer for cluster assignment, to cluster wells into groups depending on the production situation that occurs in the vicinity of the well, which allows reacting proactively. Then the optimal control of wells belonging to specific groups is determined using an auto-adaptive decision tree whose parameters are optimized using a novel sequential model-based algorithm configuration method. Optimization of petroleum reservoirs production translates directly into several economic benefits: reduction in operation costs, increase in the production effectiveness and increase in overall income without any extra expenditure as only control is changed. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012015
Author(s):  
V Sai Krishna Reddy ◽  
P Meghana ◽  
N V Subba Reddy ◽  
B Ashwath Rao

Abstract Machine Learning is an application of Artificial Intelligence where the method begins with observations on data. In the medical field, it is very important to make a correct decision within less time while treating a patient. Here ML techniques play a major role in predicting the disease by considering the vast amount of data that is produced by the healthcare field. In India, heart disease is the major cause of death. According to WHO, it can predict and prevent stroke by timely actions. In this paper, the study is useful to predict cardiovascular disease with better accuracy by applying ML techniques like Decision Tree and Naïve Bayes and also with the help of risk factors. The dataset that we considered is the Heart Failure Dataset which consists of 13 attributes. In the process of analyzing the performance of techniques, the collected data should be pre-processed. Later, it should follow by feature selection and reduction.


2020 ◽  
Vol 8 ◽  
pp. 61-72
Author(s):  
Kara Combs ◽  
Mary Fendley ◽  
Trevor Bihl

Artificial Intelligence and Machine Learning (AI/ML) models are increasingly criticized for their “black-box” nature. Therefore, eXplainable AI (XAI) approaches to extract human-interpretable decision processes from algorithms have been explored. However, XAI research lacks understanding of algorithmic explainability from a human factors’ perspective. This paper presents a repeatable human factors heuristic analysis for XAI with a demonstration on four decision tree classifier algorithms.


Sign in / Sign up

Export Citation Format

Share Document