Criteria for the Stability Limit Prediction of High Speed Centrifugal Compressors With Vaneless Diffuser: Part I — Flow Structure Analysis

Author(s):  
Carlo Cravero ◽  
Davide Marsano

Abstract High-speed centrifugal compressor requirements include a wide operating range between choking and stall especially for turbocharging applications. The prediction of the stability limit at different speeds is still challenging. In literature, several studies have been published on the phenomena that trigger the compressor instability. However, a comprehensive analysis of criteria that can be used in the first steps of centrifugal compressors design to predict the stability limit is still missing. In previous work the authors have already presented a criterion, so called “Stability Parameter”, to predict the surge line of centrifugal compressors based on a simplified CFD approach that does not require excessive computational resources and that can be efficiently used in the preliminary design phases. The above methodology has demonstrated its accuracy for centrifugal compressors with vaned diffuser, but a lower accuracy has been detected for vaneless diffusers. Before proceeding to identify additional criteria focused on compressors with vaneless diffuser, an in-depth fluid dynamics analysis has been necessary. This analysis has been also carried out through fully 3D unsteady simulations to allow identifying the real phenomena linked to the trigger of the instability of centrifugal compressors. It has been found how these phenomena are strongly related to the rotational speed, in particular have been shown the key role of the volute at high rotational speed.

Author(s):  
Carlo Cravero ◽  
Davide Marsano

Abstract The challenge to be able to predict the stability limit in high speed centrifugal compressor is particularly strategic in an initial design phase. Furthermore, to be able to predict the limit massflow rate through the use of simplified numerical models (which does not require excessive computational resources) is very important. In the literature there are several methods to predict the chocking condition, while there is a lack as regards the surge condition. The authors have already presented a criterion to predict the surge line valid for centrifugal compressors with vaned diffuser. Instead those with vaneless diffuser have a very different behavior. For this reason, in the first paper an in-depth fluid dynamic analysis has been carried out, in order to identify the main phenomena linked to the trigger of instability in this type of compressors. This analysis has allowed understanding that the rotational speed is a discriminating factor in the phenomenology. In this second part, using the previous information, different criteria to predict the limit massflow rate for centrifugal compressors with vaneless diffuser are described. All the criteria are based on different simplified CFD approaches that can be routinely used during the design phase.


2014 ◽  
Vol 590 ◽  
pp. 121-125 ◽  
Author(s):  
Wen Kai Jie ◽  
Jian Chen ◽  
Deng Sheng Zheng ◽  
Gui Cheng Wang

The coupling characteristic of the tool-holder/spindle interface in high speed NC machine has significant influence on machine tool accuracy and process stability. With the example of HSK-E63, based on nonlinear finite element method (FEM), the coupling characteristic of the tool-holder/spindle interface under high rotational speed was investigated, the influence of interference, clamping force and rotational speed on the contact stress and the sectional area of clearance were discussed in detail. The results can be used as theoretical consideration to design and optimize the high speed tool-holder/spindle interface.


2021 ◽  
Vol 5 (4) ◽  
pp. 130
Author(s):  
Rinku K. Mittal ◽  
Ramesh K. Singh

Catastrophic tool failure due to the low flexural stiffness of the micro-tool is a major concern for micromanufacturing industries. This issue can be addressed using high rotational speed, but the gyroscopic couple becomes prominent at high rotational speeds for micro-tools affecting the dynamic stability of the process. This study uses the multiple degrees of freedom (MDOF) model of the cutting tool to investigate the gyroscopic effect in machining. Hopf bifurcation theory is used to understand the long-term dynamic behavior of the system. A numerical scheme based on the linear multistep method is used to solve the time-periodic delay differential equations. The stability limits have been predicted as a function of the spindle speed. Higher tool deflections occur at higher spindle speeds. Stability lobe diagram shows the conservative limits at high rotational speeds for the MDOF model. The predicted stability limits show good agreement with the experimental limits, especially at high rotational speeds.


Author(s):  
Erdzan Hodzic ◽  
Senbin Yu ◽  
Arman Ahamed Subash ◽  
Xin Liu ◽  
Xiao Liu ◽  
...  

Clean technology has become a key feature due to increasing environmental concerns. Swirling flows, being directly associated with combustion performance and hence minimized pollutant formation, are encountered in most propulsion and power-generation combustion devices. In this study, the development process of the conceptual swirl burner developed at the Swedish National Centre for Combustion and Technology (CeCOST), is presented. Utilizing extensive computational fluid dynamics (CFD) analysis, both the lead time and cost in manufacturing of the different burner parts were significantly reduced. The performance maps bounded by the flashback and blow-off limits for the current configuration were obtained and studied in detail using advanced experimental measurements and numerical simulations. Utilizing high speed OH-chemiluminescence, OH/CH2O-PLIF and Large Eddy Simulation (LES), details of the combustion process and flame-flow interaction are presented. The main focus is on three different cases, a stable case, a case close to blow-off and flashback condition. We show the influence of the flame on the core flow and how an increase in swirl may extend the stability limit of the anchored flame in swirling flow burners.


Author(s):  
Jose Moreno ◽  
John Dodds ◽  
Mehdi Vahdati ◽  
Sina Stapelfeldt

Abstract Reynolds-averaged Navier-Stokes (RANS) equations are employed for aerodynamic and aeroelastic modelling in axial compressors. Their solutions are highly dependent on the turbulence models for closure. The main objective of this work is to assess the widely used Spalart-Allmaras model’s suitability for compressor flows. For this purpose, an extensive investigation of the sources of uncertainties in a high-speed multi-stage compressor rig was carried out. The grid resolution near the casing end wall, which affects the tip leakage flow and casing boundary layer, was found to have a major effect on the stability limit prediction. Refinements in this region led to a stall margin loss prediction. It was found that this loss was exclusively due to the destruction term in the SA model.


1997 ◽  
Vol 119 (4) ◽  
pp. 934-941 ◽  
Author(s):  
A. Gelin ◽  
J.-M. Pugnet ◽  
D. Bolusset ◽  
P. Friez

During full-load shop tests under natural gas, two multistage centrifugal compressors exhibited subsynchronous vibrations. Both of them are low-flow, high-pressure, high rotational speed compressors, and are fitted with tilting pad bearings and dry gas seals. A rotating stall problem was first eliminated by a modification of the diffuser geometry. Then, aerodynamic excitations caused the rotors to operate at their stability limit, and high vibration levels were observed at the first natural frequency. A complete rotordynamics analysis was performed in order to model precisely all the fluid–structure interactions. Modifications of the rotor designs were implemented, consisting in optimizing conveniently the bearing pads, replacing the toothed labyrinth seals of the balance pistons by damping honeycomb seals, fitting them with improved shunt hole systems. In addition, the dry gas seals were found to have been damaged, due to thermal effects, and further modifications were implemented to eliminate this problem. Final full load tests demonstrated a satisfactory behavior of both centrifugal compressors.


2015 ◽  
Vol 656-657 ◽  
pp. 652-657 ◽  
Author(s):  
Norifumi Miyanaga ◽  
Jun Tomioka

It is absolutely important for ultra-compact rotational machineries to achieve sable shaft rotation at ultra-high-speed. This paper discussed herringbone-grooved aerodynamic journal bearing systems developed for the purpose. In this system, the bearings are supported by rubber-O-rings for accurate and stable operations. To grasp the possibility for stabilization, two types of O-rings with different stiffness and damping properties under bearing supporting were tested in the experiment. As the results, the bearing system demonstrated the maximum rotational speed over 460,000 rpm without unstable phenomenon called whirl. However, the difference in rubber O-rings definitely affected the stability of the bearing system.


2006 ◽  
Vol 129 (2) ◽  
pp. 407-415 ◽  
Author(s):  
Vincent Gagnol ◽  
Belhassen C. Bouzgarrou ◽  
Pascal Ray ◽  
Christian Barra

Prediction of stable cutting regions is a critical requirement for high-speed milling operations. These predictions are generally made using frequency-response measurements of the tool-holder-spindle set obtained from a nonrotating spindle. However, significant changes in system dynamics occur during high-speed rotation. In this paper, a dynamic high-speed spindle-bearing system model is elaborated on the basis of rotor dynamics prediction and readjusted on the basis of experimental modal identification. The dependency of dynamic behavior on speed range is then investigated and determined with accuracy. Dedicated experiments are carried out in order to confirm model results. They show that dynamic effects due to high rotational speed and elastic deformations, such as gyroscopic coupling and spin softening, have a significant influence on spindle behavior. By integrating the modeled speed-dependent spindle transfer function in the chatter vibration stability approach of Altintas and Budak (1995, CIRPS Ann, 44(1), pp. 357–362), a new dynamic stability lobe diagram is predicted. Significant changes are observed in the stability limits constructed using the proposed approach and allow accurate prediction of cutting conditions to be established. Finally, optimization studies are performed on spindle design parameters in order to obtain a chatter vibration-free cutting operation at the desired speed and depth of cut for a given cutter.


Sign in / Sign up

Export Citation Format

Share Document