The Exponential-Weight Mean-Variance Model: A novel computational model for the Balloon Analogue Risk Task
The Balloon Analogue Risk Task (BART) is a popular task used to measure risk-taking behavior. To identify cognitive processes associated with choice behavior on the BART, a few computational models have been proposed. However, the extant models are either too simplistic or fail to show good parameter recovery performance. Here, we propose a novel computational model, the exponential-weight mean-variance (EWMV) model, which addresses the limitations of existing models. By using multiple model comparison methods, including post hoc model fits criterion and parameter recovery, we showed that the EWMV model outperforms the existing models. In addition, we applied the EWMV model to BART data from healthy controls and substance-using populations (patients with past opiate and stimulant dependence). The results suggest that (1) the EWMV model addresses the limitations of existing models and (2) heroin-dependent individuals show reduced risk preference than other groups in the BART.