scholarly journals Postprint: "Temporal matching between interoception and exteroception: electrophysiological responses in a heartbeat discrimination task"

2018 ◽  
Author(s):  
Hirokata Fukushima

Recent studies on interoception emphasize the importance of multisensory integration between interoception and exteroception. One of the methods frequently applied for assessing interoceptive sensitivity is the heartbeat discrimination task, where individuals judge whether the timing of external stimuli (e.g., tones) are synchronized to their own heartbeat. Despite its extensive use in research, the neural dynamics underlying the temporal matching between interoceptive and exteroceptive stimuli in this task have remained unclear. The present study used electroencephalography (EEG) to examine the neural responses of healthy participants who performed a heartbeat discrimination task. We analyzed the differences between EEG responses to tones, which were likely to be perceived as “heartbeat-synchronous” (200 ms delayed from the R-wave) or “heartbeat-asynchronous” (0 ms delayed). Possible associations of these neural differentiations with task performance were also investigated. Compared with the responses to heartbeat-asynchronous tones, heartbeat-synchronous tones caused a relative decrease in early gamma-band EEG response and an increase in later P2 event-related potential (ERP) amplitude. Condition differences in the EEG/ERP measures were not significantly correlated with the behavioral measures. The mechanisms underlying the observed neural responses and the possibility of electrophysiological measurement of interoceptive sensitivity are discussed in terms of two perspectives: the predictive coding framework and the cardiac-phase-dependent baroreceptor function.

2019 ◽  
Vol 33 (4) ◽  
pp. 219-231
Author(s):  
Hirokata Fukushima ◽  
Yukari Tanaka ◽  
Masako Myowa

Abstract. Recent studies on interoception emphasize the importance of multisensory integration between interoception and exteroception. One of the methods frequently applied for assessing interoceptive sensitivity is the heartbeat discrimination task, where individuals judge whether the timing of external stimuli (e.g., tones) are synchronized to their own heartbeat. Despite its extensive use in research, the neural dynamics underlying the temporal matching between interoceptive and exteroceptive stimuli in this task have remained unclear. The present study used electroencephalography (EEG) to examine the neural responses of healthy participants who performed a heartbeat discrimination task. We analyzed the differences between EEG responses to tones, which were likely to be perceived as “heartbeat-synchronous” (200 ms delayed from the R wave) or “heartbeat-asynchronous” (0 ms delayed). Possible associations of these neural differentiations with task performance were also investigated. Compared with the responses to heartbeat-asynchronous tones, heartbeat-synchronous tones caused a relative decrease in early gamma-band EEG response and an increase in later P2 event-related potential (ERP) amplitude. Condition differences in the EEG/ERP measures were not significantly correlated with the behavioral measures. The mechanisms underlying the observed neural responses and the possibility of electrophysiological measurement of interoceptive sensitivity are discussed in terms of two perspectives: the predictive coding framework and the cardiac-phase-dependent baroreceptor function.


Author(s):  
Xu Xu ◽  
Chunyan Kang ◽  
Kaia Sword ◽  
Taomei Guo

Abstract. The ability to identify and communicate emotions is essential to psychological well-being. Yet research focusing exclusively on emotion concepts has been limited. This study examined nouns that represent emotions (e.g., pleasure, guilt) in comparison to nouns that represent abstract (e.g., wisdom, failure) and concrete entities (e.g., flower, coffin). Twenty-five healthy participants completed a lexical decision task. Event-related potential (ERP) data showed that emotion nouns elicited less pronounced N400 than both abstract and concrete nouns. Further, N400 amplitude differences between emotion and concrete nouns were evident in both hemispheres, whereas the differences between emotion and abstract nouns had a left-lateralized distribution. These findings suggest representational distinctions, possibly in both verbal and imagery systems, between emotion concepts versus other concepts, implications of which for theories of affect representations and for research on affect disorders merit further investigation.


2020 ◽  
Author(s):  
Fernando Ferreira-Santos ◽  
Mariana R. Pereira ◽  
Tiago O. Paiva ◽  
Pedro R. Almeida ◽  
Eva C. Martins ◽  
...  

The behavioral and electrophysiological study of the emotional intensity of facial expressions of emotions has relied on image processing techniques termed ‘morphing’ to generate realistic facial stimuli in which emotional intensity can be manipulated. This is achieved by blending neutral and emotional facial displays and treating the percent of morphing between the two stimuli as an objective measure of emotional intensity. Here we argue that the percentage of morphing between stimuli does not provide an objective measure of emotional intensity and present supporting evidence from affective ratings and neural (event-related potential) responses. We show that 50% morphs created from high or moderate arousal stimuli differ in subjective and neural responses in a sensible way: 50% morphs are perceived as having approximately half of the emotional intensity of the original stimuli, but if the original stimuli differed in emotional intensity to begin with, then so will the morphs. We suggest a re-examination of previous studies that used percentage of morphing as a measure of emotional intensity and highlight the value of more careful experimental control of emotional stimuli and inclusion of proper manipulation checks.


Sexual Abuse ◽  
2021 ◽  
pp. 107906322110242
Author(s):  
Anastasios Ziogas ◽  
Benedikt Habermeyer ◽  
Wolfram Kawohl ◽  
Elmar Habermeyer ◽  
Andreas Mokros

A promising line of research on forensic assessment of paraphilic sexual interest focuses on behavioral measures of visual attention using sexual stimuli as distractors. The present study combined event-related potentials (ERPs) with behavioral measures to investigate whether detection of a hidden sexual preference can be improved with ERPs. Normal variants of sexual orientation were used for a proof-of-concept investigation. Accordingly, 40 heterosexual and 40 gay men participated in the study. Within each group, half of the participants were instructed to hide their sexual orientation. The results showed that a match between sexual orientation and stimulus delays responses and influences ERP before motor responses. Late ERP components showed higher potential in differentiating hidden sexual preferences than motor responses, thereby showing how ERPs can be used in combination with reaction time measures to potentially facilitate the detection of hidden sexual preferences.


Appetite ◽  
2021 ◽  
pp. 105862
Author(s):  
Whitney D. Allen ◽  
Rebekah E. Rodeback ◽  
Kaylie A. Carbine ◽  
Ariana M. Hedges-Muncy ◽  
James D. LeCheminant ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 1581
Author(s):  
Alexis E. Whitton ◽  
Kathryn E. Lewandowski ◽  
Mei-Hua Hall

Motivational and perceptual disturbances co-occur in psychosis and have been linked to aberrations in reward learning and sensory gating, respectively. Although traditionally studied independently, when viewed through a predictive coding framework, these processes can both be linked to dysfunction in striatal dopaminergic prediction error signaling. This study examined whether reward learning and sensory gating are correlated in individuals with psychotic disorders, and whether nicotine—a psychostimulant that amplifies phasic striatal dopamine firing—is a common modulator of these two processes. We recruited 183 patients with psychotic disorders (79 schizophrenia, 104 psychotic bipolar disorder) and 129 controls and assessed reward learning (behavioral probabilistic reward task), sensory gating (P50 event-related potential), and smoking history. Reward learning and sensory gating were correlated across the sample. Smoking influenced reward learning and sensory gating in both patient groups; however, the effects were in opposite directions. Specifically, smoking was associated with improved performance in individuals with schizophrenia but impaired performance in individuals with psychotic bipolar disorder. These findings suggest that reward learning and sensory gating are linked and modulated by smoking. However, disorder-specific associations with smoking suggest that nicotine may expose pathophysiological differences in the architecture and function of prediction error circuitry in these overlapping yet distinct psychotic disorders.


2015 ◽  
Vol 26 (6) ◽  
pp. 721-732 ◽  
Author(s):  
Sarah Hulbert ◽  
Hojjat Adeli

AbstractFor the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.


2020 ◽  
Vol 10 (11) ◽  
pp. 782
Author(s):  
Alexander Savostyanov ◽  
Andrey Bocharov ◽  
Tatiana Astakhova ◽  
Sergey Tamozhnikov ◽  
Alexander Saprygin ◽  
...  

The aim was to investigate behavioral reactions and event-related potential (ERP) responses in healthy participants under conditions of personalized attribution of emotional appraisal vocabulary to one-self or to other people. One hundred and fifty emotionally neutral, positive and negative words describing people’s traits were used. Subjects were asked to attribute each word to four types of people: one-self, loved, unpleasant and neutral person. The reaction time during adjectives attribution to one-self and a loved person was shorter than during adjectives attribution to neutral and unpleasant people. Self-related adjectives induced higher amplitudes of the N400 ERP peak in the medial cortical areas in comparison with adjectives related to other people. The amplitude of P300 and P600 depended on the emotional valence of assessments, but not on the personalized attribution. The interaction between the attribution effect and the effect of emotional valence of assessments was observed for the N400 peak in the left temporal area. The maximal amplitude of N400 was revealed under self-attributing of emotionally positive adjectives. Our results supported the hypothesis that the emotional valence of assessments and the processing of information about one-self or others were related to the brain processes that differ from each other in a cortical localization or time dynamics.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guozhang Chen ◽  
Pulin Gong

Abstract Cortical populations produce complex spatiotemporal activity spontaneously without sensory inputs. However, the fundamental computational roles of such spontaneous activity remain unclear. Here, we propose a new neural computation mechanism for understanding how spontaneous activity is actively involved in cortical processing: Computing by Modulating Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate that spontaneous activity patterns with dynamical properties, as found in empirical observations, are modulated or redistributed by external stimuli to give rise to neural responses. We find that this CMSA mechanism of generating neural responses provides profound computational advantages, such as actively speeding up cortical processing. We further reveal that the CMSA mechanism provides a unifying explanation for many experimental findings at both the single-neuron and circuit levels, and that CMSA in response to natural stimuli such as face images is the underlying neurophysiological mechanism of perceptual “bubbles” as found in psychophysical studies.


Sign in / Sign up

Export Citation Format

Share Document