scholarly journals What counts as an exemplar model, anyway? A commentary on Ambridge (2020)

2020 ◽  
Author(s):  
Kyle Mahowald ◽  
George Kachergis ◽  
Michael C. Frank

Ambridge (2019) calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec – which have been extremely successful in modern natural language processing (NLP) applications – count? Although these models often have ample parametric complexity to store exemplars from their training data, they also go far beyond simple storage by processing and compressing the input via their architectural constraints. The resulting representations have been shown to encode emergent abstractions. If these models are exemplar-based then Ambridge’s theory only weakly constrains future work. On the other hand, if these systems are not exemplar models, why is it that true exemplar models are not contenders in modern NLP?

2020 ◽  
Vol 40 (5-6) ◽  
pp. 608-611 ◽  
Author(s):  
Kyle Mahowald ◽  
George Kachergis ◽  
Michael C. Frank

Ambridge calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec – which have been extremely successful in modern natural language processing (NLP) applications – count? Although these models often have ample parametric complexity to store exemplars from their training data, they also go far beyond simple storage by processing and compressing the input via their architectural constraints. The resulting representations have been shown to encode emergent abstractions. If these models are exemplar-based then Ambridge’s theory only weakly constrains future work. On the other hand, if these systems are not exemplar models, why is it that true exemplar models are not contenders in modern NLP?


2019 ◽  
Author(s):  
Antônio Franco ◽  
Leonardo Oliveira

Currently, there are several approaches to provide anonymity on the Internet. However, one can still identify anonymous users through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when accurately identify the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our results show a trade-off between the obfuscation level and the text semantics.


Author(s):  
Bhavana D. ◽  
K. Chaitanya Krishna ◽  
Tejaswini K. ◽  
N. Venkata Vikas ◽  
A. N. V. Sahithya

The task of image caption generator is mainly about extracting the features and ongoings of an image and generating human-readable captions that translate the features of the objects in the image. The contents of an image can be described by having knowledge about natural language processing and computer vision. The features can be extracted using convolution neural networks which makes use of transfer learning to implement the exception model. It stands for extreme inception, which has a feature extraction base with 36 convolution layers. This shows accurate results when compared with the other CNNs. Recurrent neural networks are used for describing the image and to generate accurate sentences. The feature vector that is extracted by using the CNN is fed to the LSTM. The Flicker 8k dataset is used to train the network in which the data is labeled properly. The model will be able to generate accurate captions that nearly describe the activities carried in the image when an input image is given to it. Further, the authors use the BLEU scores to validate the model.


2020 ◽  
Author(s):  
Vadim V. Korolev ◽  
Artem Mitrofanov ◽  
Kirill Karpov ◽  
Valery Tkachenko

The main advantage of modern natural language processing methods is a possibility to turn an amorphous human-readable task into a strict mathematic form. That allows to extract chemical data and insights from articles and to find new semantic relations. We propose a universal engine for processing chemical and biological texts. We successfully tested it on various use-cases and applied to a case of searching a therapeutic agent for a COVID-19 disease by analyzing PubMed archive.


2021 ◽  
Vol 11 (7) ◽  
pp. 3184
Author(s):  
Ismael Garrido-Muñoz  ◽  
Arturo Montejo-Ráez  ◽  
Fernando Martínez-Santiago  ◽  
L. Alfonso Ureña-López 

Deep neural networks are hegemonic approaches to many machine learning areas, including natural language processing (NLP). Thanks to the availability of large corpora collections and the capability of deep architectures to shape internal language mechanisms in self-supervised learning processes (also known as “pre-training”), versatile and performing models are released continuously for every new network design. These networks, somehow, learn a probability distribution of words and relations across the training collection used, inheriting the potential flaws, inconsistencies and biases contained in such a collection. As pre-trained models have been found to be very useful approaches to transfer learning, dealing with bias has become a relevant issue in this new scenario. We introduce bias in a formal way and explore how it has been treated in several networks, in terms of detection and correction. In addition, available resources are identified and a strategy to deal with bias in deep NLP is proposed.


2017 ◽  
Vol 56 (05) ◽  
pp. 377-389 ◽  
Author(s):  
Xingyu Zhang ◽  
Joyce Kim ◽  
Rachel E. Patzer ◽  
Stephen R. Pitts ◽  
Aaron Patzer ◽  
...  

SummaryObjective: To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements.Methods: Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient’s reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model.Results: Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.7310.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN.Conclusions: The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient’s reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.


2020 ◽  
Vol 11 (2) ◽  
pp. 41-47
Author(s):  
Amandeep Kaur ◽  
Madhu Dhiman ◽  
Mansi Tonk ◽  
Ramneet Kaur

Artificial Intelligence is the combination of machine and human intelligence, which are in research trends from the last many years. Different Artificial Intelligence programs have become capable of challenging humans by providing Expert Systems, Neural Networks, Robotics, Natural Language Processing, Face Recognition and Speech Recognition. Artificial Intelligence brings a bright future for different technical inventions in various fields. This review paper shows the general concept of Artificial Intelligence and presents an impact of Artificial Intelligence in the present and future world.


Sign in / Sign up

Export Citation Format

Share Document