scholarly journals Neural integration in body perception

2018 ◽  
Author(s):  
Richard Ramsey

The perception of other people is instrumental in guiding social interactions. For example, the appearance of the human body cues a wide range of inferences regarding sex, age, health and personality, as well as emotional state and intentions, which influence social behaviour. To date, most neuroscience research on body perception has aimed to characterise the functional contribution of segregated patches of cortex in the ventral visual stream. In light of the growing prominence of network architectures in neuroscience, the current paper reviews neuroimaging studies that measure functional integration between different brain regions during body perception. The review demonstrates that body perception is not restricted to processing in the ventral visual stream, but instead reflects a functional alliance between the ventral visual stream and extended neural systems associated with action perception, executive functions and theory-of-mind. Overall, these findings demonstrate how body percepts are constructed through interactions in distributed brain networks and underscores that functional segregation and integration should be considered together when formulating neurocognitive theories of body perception. Insight from such an updated model of body perception generalises to inform the organisational structure of social perception and cognition more generally, and also informs disorders of body image, such as anorexia nervosa, which may rely on atypical integration of body-related information.

2018 ◽  
Vol 30 (10) ◽  
pp. 1442-1451 ◽  
Author(s):  
Richard Ramsey

The perception of other people is instrumental in guiding social interactions. For example, the appearance of the human body cues a wide range of inferences regarding sex, age, health, and personality, as well as emotional state and intentions, which influence social behavior. To date, most neuroscience research on body perception has aimed to characterize the functional contribution of segregated patches of cortex in the ventral visual stream. In light of the growing prominence of network architectures in neuroscience, the current article reviews neuroimaging studies that measure functional integration between different brain regions during body perception. The review demonstrates that body perception is not restricted to processing in the ventral visual stream but instead reflects a functional alliance between the ventral visual stream and extended neural systems associated with action perception, executive functions, and theory of mind. Overall, these findings demonstrate how body percepts are constructed through interactions in distributed brain networks and underscore that functional segregation and integration should be considered together when formulating neurocognitive theories of body perception. Insight from such an updated model of body perception generalizes to inform the organizational structure of social perception and cognition more generally and also informs disorders of body image, such as anorexia nervosa, which may rely on atypical integration of body-related information.


2016 ◽  
Author(s):  
Benjamin Gagl ◽  
Fabio Richlan ◽  
Philipp Ludersdorfer ◽  
Jona Sassenhagen ◽  
Susanne Eisenhauer ◽  
...  

AbstractTo characterize the left-ventral occipito-temporal cortex (lvOT) role during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filter out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging. Empirically, using functional magnetic resonance imaging, we demonstrate that quantitative LCM simulations predict lvOT activation across three studies better than alternative models. Besides, we found that word-likeness, which is assumed as input to LCM, is represented posterior to lvOT. In contrast, a dichotomous word/non-word contrast, which is assumed as the LCM’s output, could be localized to upstream frontal brain regions. Finally, we found that training lexical categorization results in more efficient reading. Thus, we propose a ventral-visual-stream processing framework for reading involving word-likeness extraction followed by lexical categorization, before meaning extraction.


2021 ◽  
Author(s):  
Dima Ayyash ◽  
Saima Malik-Moraleda ◽  
Jeanne Gallee ◽  
Josef Affourtit ◽  
Malte Hoffman ◽  
...  

To understand the architecture of human language, it is critical to examine diverse languages; yet most cognitive neuroscience research has focused on a handful of primarily Indo-European languages. Here, we report a large-scale investigation of the fronto-temporal language network across 45 languages and establish the cross-linguistic generality of its key functional properties, including general topography, left-lateralization, strong functional integration among its brain regions, and functional selectivity for language processing. 


2020 ◽  
Vol 30 (10) ◽  
pp. 5560-5569
Author(s):  
Yanpei Wang ◽  
Chenyi Zuo ◽  
Daoyang Wang ◽  
Sha Tao ◽  
Lei Hao

Abstract The ability of chess experts depends to a large extent on spatial visual processing, attention, and working memory, all of which are thought to be mediated by the thalamus. This study explored whether continued practice and rehearsal over a long period of time results in structural changes in the thalamic region. We found smaller gray matter volume regions in the thalami of expert Chinese chess players in comparison with novice players. We then used these regions as seeds for resting-state functional connectivity analysis and observed significantly strengthened integration between the thalamus and fronto-parietal network in expert Chinese chess players. This strengthened integration that includes a group of brain regions showing an increase in activation to external stimulation, particularly during tasks relying on working memory and attention. Our findings demonstrate structural changes in the thalamus caused by a wide range of engagement in chess problem solving, and that this strengthened functional integration with widely distributed circuitry better supports high-level cognitive control of behavior.


2019 ◽  
Author(s):  
Laura Cabral ◽  
Leire Zubiaurre ◽  
Conor Wild ◽  
Annika Linke ◽  
Rhodri Cusack

AbstractThe development of the ventral visual stream is shaped both by an innate proto-organization and by experience. The fusiform face area (FFA), for example, has stronger connectivity to early visual regions representing the fovea and lower spatial frequencies. In adults, category-selective regions in the ventral stream (e.g. the FFA) also have distinct signatures of connectivity to widely distributed brain regions, which are thought to encode rich cross-modal, motoric, and affective associations (e.g., tool regions to the motor cortex). It is unclear whether this long-range connectivity is also innate, or if it develops with experience. We used MRI diffusion-weighted imaging with tractography to characterize the connectivity of face, place, and tool category-selective regions in neonates (N=445), 1-9 month old infants (N=11), and adults (N=14). Using a set of linear-discriminant classifiers, category-selective connectivity was found to be both innate and shaped by experience. Connectivity for faces was the most developed, with no evidence of significant change in the time period studied. Place and tool networks were present at birth but also demonstrated evidence of development with experience, with tool connectivity developing over a more protracted period (9 months). Taken together, the results support an extended proto-organizon to include long-range connectivity that could provide additional constraints on experience dependent development.


2019 ◽  
Author(s):  
Sushrut Thorat

A mediolateral gradation in neural responses for images spanning animals to artificial objects is observed in the ventral temporal cortex (VTC). Which information streams drive this organisation is an ongoing debate. Recently, in Proklova et al. (2016), the visual shape and category (“animacy”) dimensions in a set of stimuli were dissociated using a behavioural measure of visual feature information. fMRI responses revealed a neural cluster (extra-visual animacy cluster - xVAC) which encoded category information unexplained by visual feature information, suggesting extra-visual contributions to the organisation in the ventral visual stream. We reassess these findings using Convolutional Neural Networks (CNNs) as models for the ventral visual stream. The visual features developed in the CNN layers can categorise the shape-matched stimuli from Proklova et al. (2016) in contrast to the behavioural measures used in the study. The category organisations in xVAC and VTC are explained to a large degree by the CNN visual feature differences, casting doubt over the suggestion that visual feature differences cannot account for the animacy organisation. To inform the debate further, we designed a set of stimuli with animal images to dissociate the animacy organisation driven by the CNN visual features from the degree of familiarity and agency (thoughtfulness and feelings). Preliminary results from a new fMRI experiment designed to understand the contribution of these non-visual features are presented.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 673
Author(s):  
Alexandra L. Whittaker ◽  
Yifan Liu ◽  
Timothy H. Barker

The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique’s utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.


NeuroImage ◽  
2016 ◽  
Vol 128 ◽  
pp. 316-327 ◽  
Author(s):  
Marianna Boros ◽  
Jean-Luc Anton ◽  
Catherine Pech-Georgel ◽  
Jonathan Grainger ◽  
Marcin Szwed ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elisa C. Baek ◽  
Matthew Brook O’Donnell ◽  
Christin Scholz ◽  
Rui Pei ◽  
Javier O. Garcia ◽  
...  

AbstractWord of mouth recommendations influence a wide range of choices and behaviors. What takes place in the mind of recommendation receivers that determines whether they will be successfully influenced? Prior work suggests that brain systems implicated in assessing the value of stimuli (i.e., subjective valuation) and understanding others’ mental states (i.e., mentalizing) play key roles. The current study used neuroimaging and natural language classifiers to extend these findings in a naturalistic context and tested the extent to which the two systems work together or independently in responding to social influence. First, we show that in response to text-based social media recommendations, activity in both the brain’s valuation system and mentalizing system was associated with greater likelihood of opinion change. Second, participants were more likely to update their opinions in response to negative, compared to positive, recommendations, with activity in the mentalizing system scaling with the negativity of the recommendations. Third, decreased functional connectivity between valuation and mentalizing systems was associated with opinion change. Results highlight the role of brain regions involved in mentalizing and positive valuation in recommendation propagation, and further show that mentalizing may be particularly key in processing negative recommendations, whereas the valuation system is relevant in evaluating both positive and negative recommendations.


Sign in / Sign up

Export Citation Format

Share Document