scholarly journals Intercellular signalling, cell fate and cell shape in the Drosophila pupal wing

2017 ◽  
Author(s):  
Aidan Maartens

The morphogenesis of tissues in animal development is orchestrated by intercellular signalling and executed by cell behaviours such as changes to shape. Understanding the link between signalling and cell shape changes is a key task of developmental biology. This work addresses this problem using the development of the pupal wing of Drosophila melanogaster. The pupal wing is a bilayered epithelium which is patterned into vein and intervein domains, and which secretes the cuticle of the adult wing. I first address the cellular basis of pupal wing development, and show that the process comprises a series of dynamic cell shape changes involving alterations to the apical and basolateral surfaces of the cells. Using temporally controlled mis-expression, I then investigate the role of intercellular signalling in these shape changes, and define the competence of cells in the wing to respond to ectopic signals. The dimensions of signalling in the pupal wing are then investigated, and I show that while BMP ligands can travel between the layers to promote vein development, such signalling is not a prerequisite for cellular differentiation. Within the plane of the epithelium, the BMP ligand Dpp can only induce signalling at a short range, potentially due to the upregulation of receptor levels in receiving cells. Finally, attention is turned to the means by which cell signalling controls cell shape changes, specifically in the crossveins. I identify the RhoGAP Cv-c as a downstream target of BMP signalling which acts to inhibit a novel RhoGTPase function in intervein development. This provides an example of how signalling pathways can enact cell shape changes, via the transcriptional regulation of RhoGAPs.

2020 ◽  
Author(s):  
Daniel Toddie-Moore ◽  
Martti Montanari ◽  
Ngan Vi Tran ◽  
Evgeniy Brik ◽  
Hanna Antson ◽  
...  

Developmental patterning is thought to be regulated by conserved signalling pathways. Initial patterns are often broad before refining to only those cells that commit to a particular fate. However, the mechanisms by which pattern refinement takes place remain to be addressed. Using the posterior crossvein (PCV) of the Drosophila pupal wing as a model, into which bone morphogenetic protein (BMP) ligand is extracellularly transported to instruct vein patterning, we investigate how pattern refinement is regulated. We found that BMP signalling induces apical enrichment of Myosin II in developing crossvein cells to regulate apical constriction. Live imaging of cellular behaviour indicates that changes in cell shape are dynamic and transient, only being maintained in those cells that retain vein fate after refinement. Disrupting cell shape changes throughout the PCV inhibits pattern refinement. In contrast, disrupting cell shape in only a subset of vein cells can result in a loss of BMP signalling. In addition, we observed that expressing the constitutively active form of the BMP type I receptor in clones caused apical constriction autonomously and often induced BMP signalling loss in the PCV region in a non-autonomous manner. We propose that the cell shape changes of future PCV cells allow them to compete more efficiently for the basally localised BMP signal by forming a mechano-chemical feedback loop. This study highlights a new form of competition among the cells: competing for a signal that induces cell fate.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 73-84 ◽  
Author(s):  
M. Leptin ◽  
B. Grunewald

The first morphogenetic movement during Drosophila development is the invagination of the mesoderm, an event that folds a one-layered epithelium into a multilayered structure. In this paper, we describe the shape changes and behaviour of the cells participating in this process and show how mutations that change cell fate affect this behaviour. We divide the formation of the mesodermal germ layer into two phases. During the first phase, the ventral epithelium folds into a tube by a series of concerted cell shape changes (ventral furrow formation). Based on the behaviour of cells in this phase, we conclude that the prospective mesoderm is not a homogeneous cell population, but consists of two subpopulations. Each subpopulation goes through a distinctive sequence of specific cell shape changes which together mediate the invagination of the ventral furrow. In the second phase, the invaginated tube of mesoderm loses its epithelial character, the mesoderm cells disperse, divide and then spread out along the ectoderm to form a single cell layer. To test how ventral furrow formation depends on cell fates in the mesoderm and in neighbouring cells we alter these fates genetically using maternal and zygotic mutations. These experiments show that some of the aspects of cell behaviour specific for ventral furrow cells are part of an autonomous differentiation programme. The force driving the invagination is generated within the region of the ventral furrow, with the lateral and dorsal cell populations contributing little or none of the force. Two known zygotic genes that are required for the formation of the mesoderm, twist and snail, are expressed in ventral furrow cells, and the correct execution of cell shape changes in the mesoderm depends on both. Finally, we show that the region where the ventral furrow forms is determined by the expression of mesoderm-specific genes, and not by mechanical or other epigenetic properties of the egg.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Molly C Jud ◽  
Josh Lowry ◽  
Thalia Padilla ◽  
Erin Clifford ◽  
Yuqi Yang ◽  
...  

AbstractMorphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


Glia ◽  
1992 ◽  
Vol 6 (3) ◽  
pp. 180-187 ◽  
Author(s):  
Ignacio Torres-Aleman ◽  
Maria Teresa Rejas ◽  
Sebastian Pons ◽  
Luis Miguel Garcia-Segura

Open Biology ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 180124 ◽  
Author(s):  
Jack Daniel Sunter ◽  
Flavia Moreira-Leite ◽  
Keith Gull

Flagella have multiple functions that are associated with different axonemal structures. Motile flagella typically have a 9 + 2 arrangement of microtubules, whereas sensory flagella normally have a 9 + 0 arrangement. Leishmania exhibits both of these flagellum forms and differentiation between these two flagellum forms is associated with cytoskeletal and cell shape changes. We disrupted flagellum elongation in Leishmania by deleting the intraflagellar transport (IFT) protein IFT140 and examined the effects on cell morphogenesis. Δift140 cells have no external flagellum, having only a very short flagellum within the flagellar pocket. This short flagellum had a collapsed 9 + 0 (9v) axoneme configuration reminiscent of that in the amastigote and was not attached to the pocket membrane. Although amastigote-like changes occurred in the flagellar cytoskeleton, the cytoskeletal structures of Δift140 cells retained their promastigote configurations, as examined by fluorescence microscopy of tagged proteins and serial electron tomography. Thus, Leishmania promastigote cell morphogenesis does not depend on the formation of a long flagellum attached at the neck. Furthermore, our data show that disruption of the IFT system is sufficient to produce a switch from the 9 + 2 to the collapsed 9 + 0 (9v) axonemal structure, echoing the process that occurs during the promastigote to amastigote differentiation.


2018 ◽  
Vol 115 (11) ◽  
pp. 2259-2270
Author(s):  
Gonca Erdemci-Tandogan ◽  
Madeline J. Clark ◽  
Jeffrey D. Amack ◽  
M. Lisa Manning

Sign in / Sign up

Export Citation Format

Share Document