scholarly journals Quantitative estimation of groundwater recharge process through a vadose zone using time-lapse cross-borehole radar profiling

2007 ◽  
Vol 60 (6) ◽  
pp. 467-476 ◽  
Author(s):  
Seiichiro Kuroda ◽  
Masato Asano ◽  
Satoshi Nihira ◽  
Takehiko Okuyama ◽  
Hirotaka Saito ◽  
...  
Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 36 ◽  
Author(s):  
Yacob T. Tesfaldet ◽  
Avirut Puttiwongrak

Understanding the recharge mechanisms in the vadose zone is crucial to groundwater management and artificial recharge development. In this study, a systematic characterization of seasonal groundwater recharge was done using time-lapse electrical resistivity tomography (time-lapse ERT). The objective of this study was to characterize the seasonal groundwater recharge through the vadose zone and streams. A total of six electrical resistivity surveys in two locations were taken during the dry and rainy seasons using an advanced geosciences incorporated (AGI) SuperSting R2 resistivity meter in 2018. Then, time-lapse inversion was calculated using the dry season ERT as the base model and the rainy season ERTs as the monitoring datasets. The results showed a significant decrease in inverted resistivity from the dry season to the rainy season, which suggests rainwater infiltration through the vadose zone. Similarly, significant water level rise was observed in wells monitored during the survey indicating groundwater recharge. The time-lapse ERT showed, in one case, the Nang Dak stream and the unsaturated zones are the preferential groundwater recharge zones throughout the year; in another case, the Rieng stream is the groundwater discharge zone and the vadose zone is the preferential recharge zone. Finally, a simplified conceptual hydrogeological model representing the study area is presented to visualize the recharge mechanisms in the study area.


2014 ◽  
Vol 50 (3) ◽  
pp. 2140-2163 ◽  
Author(s):  
Elmar Strobach ◽  
B. D. Harris ◽  
J. C. Dupuis ◽  
A. W. Kepic

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. H51-H60
Author(s):  
Feng Zhou ◽  
Iraklis Giannakis ◽  
Antonios Giannopoulos ◽  
Klaus Holliger ◽  
Evert Slob

In oil drilling, mud filtrate penetrates into porous formations and alters the compositions and properties of the pore fluids. This disturbs the logging signals and brings errors to reservoir evaluation. Drilling and logging engineers therefore deem mud invasion as undesired and attempt to eliminate its adverse effects. However, the mud-contaminated formation carries valuable information, notably with regard to its hydraulic properties. Typically, the invasion depth critically depends on the formation porosity and permeability. Therefore, if adequately characterized, mud invasion effects could be used for reservoir evaluation. To pursue this objective, we have applied borehole radar to measure mud invasion depth considering its high radial spatial resolution compared with conventional logging tools, which then allows us to estimate the reservoir permeability based on the acquired invasion depth. We investigate the feasibility of this strategy numerically through coupled electromagnetic and fluid modeling in an oil-bearing layer drilled using freshwater-based mud. Time-lapse logging is simulated to extract the signals reflected from the invasion front, and a dual-offset downhole antenna mode enables time-to-depth conversion to determine the invasion depth. Based on drilling, coring, and logging data, a quantitative interpretation chart is established, mapping the porosity, permeability, and initial water saturation into the invasion depth. The estimated permeability is in a good agreement with the actual formation permeability. Our results therefore suggest that borehole radar has significant potential to estimate permeability through mud invasion effects.


2003 ◽  
Author(s):  
Sarah E. Goldstein ◽  
Tim C. Johnson ◽  
Michael D. Knoll ◽  
Warren Barrash ◽  
William P. Clement

2007 ◽  
Vol 5 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Rita Deiana ◽  
Giorgio Cassiani ◽  
Andreas Kemna ◽  
Alberto Villa ◽  
Vittorio Bruno ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 599-619 ◽  
Author(s):  
Martin Kobe ◽  
Gerald Gabriel ◽  
Adelheid Weise ◽  
Detlef Vogel

Abstract. We present results of sophisticated, high-precision time-lapse gravity monitoring that was conducted over 4 years in Bad Frankenhausen (Germany). To our knowledge, this is the first successful attempt to monitor subrosion-induced mass changes in urban areas with repeated gravimetry. The method provides an approach to estimate the mass of dissolved rocks in the subsurface. Subrosion, i.e. leaching and transfer of soluble rocks, occurs worldwide. Mainly in urban areas, any resulting ground subsidence can cause severe damage, especially if catastrophic events, i.e. collapse sinkholes, occur. Monitoring strategies typically make use of established geodetic methods, such as levelling, and therefore focus on the associated deformation processes. In this study, we combine levelling and highly precise time-lapse gravity observations. Our investigation area is the urban area of Bad Frankenhausen in central Germany, which is prone to subrosion, as many subsidence and sinkhole features on the surface reveal. The city and the surrounding areas are underlain by soluble Permian deposits, which are continuously dissolved by meteoric water and groundwater in a strongly fractured environment. Between 2014 and 2018, a total of 17 high-precision time-lapse gravimetry and 18 levelling campaigns were carried out in quarterly intervals within a local monitoring network. This network covers historical sinkhole areas but also areas that are considered to be stable. Our results reveal ongoing subsidence of up to 30.4 mm a−1 locally, with distinct spatiotemporal variations. Furthermore, we observe a significant time-variable gravity decrease on the order of 8 µGal over 4 years at several measurement points. In the processing workflow, after the application of all required corrections and least squares adjustment to our gravity observations, a significant effect of varying soil water content on the adjusted gravity differences was figured out. Therefore, we place special focus on the correlation of these observations and the correction of the adjusted gravity differences for soil water variations using the Global Land Data Assimilation System (GLDAS) Noah model to separate these effects from subrosion-induced gravity changes. Our investigations demonstrate the feasibility of high-precision time-lapse gravity monitoring in urban areas for sinkhole investigations. Although the observed rates of gravity decrease of 1–2 µGal a−1 are small, we suggest that it is significantly associated with subterranean mass loss due to subrosion processes. We discuss limitations and implications of our approach, as well as give a first quantitative estimation of mass transfer at different depths and for different densities of dissolved rocks.


Sign in / Sign up

Export Citation Format

Share Document