scholarly journals Biomass Carbon Content in Schima-Castanopsis Forest of Midhills of Nepal: A Case Study from Jaisikuna Community Forest, Kaski

2017 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Sushma Tripathi ◽  
Chandra Bahadur Thapa ◽  
Amrit Sharma

Forests are considered as both the source and sinks of carbon. Different types of forests have different carbon stock. Nepal's midhills community forests have high potentiality to sequester carbon. This paper analyzes the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block) were laid randomly. Diameter at Breast Height (DBH) and height of trees (DBH≥5cm) were measured using the DBH tape and clinometer. Leaflitter, herbs, grasses and seedling were collected from 1*1m2 plot and fresh weight was taken. Biomass of tree was calculated and below ground biomass is assumed 15% of above ground tree biomass. For calculating carbon stock, biomass is multiplied by default value 0.47. The above ground tree biomass (AGTB) carbon of chilaune, katus and other species was found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of chilaune dominated, katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ ha respectively. LHG carbon was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha respectively. Total biomass and carbon at forest was found 108.09 t/ha and 50.80 t/ ha respectively. Difference in biomass and carbon content at chilaune dominated block and katus dominated block was found insignificant. Carbon estimation at forest of different elevation, aspect and location are recommended for further research.

2018 ◽  
Vol 6 (4) ◽  
pp. 72-83
Author(s):  
Sushma Tripathi ◽  
Chandra Bahadur Thapa ◽  
Amrit Sharma ◽  
Ganesh Paudel

Community forests of Nepal’s midhills have high potentiality to sequester carbon. This paper tries to analyze the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block) which were laid randomly. Diameter at Breast Height (DBH) and height of trees (DBH≥5cm) were measured using the DBH tape and clinometer. Leaf litter, herbs, grasses and seedlings were collected from 1*1m2 plot and fresh weight was taken. For calculating carbon biomass is multiplied by default value 0.47. The AGTB carbon content of Chilaune, Katus and other species were found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of Chilaune dominated, Katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ha respectively. Carbon content at leaf litter, herbs, grasses and seedlings was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha. Total biomass and carbon of the forest was found 108.09 t/ha and 50.80 t/ha respectively. Difference in biomass and carbon content at Chilaune dominated block and Katus dominated block was found insignificant. This study record very low biomass carbon content than average of Nepal's forest but this variation in carbon stock is not necessarily due to dominant species present in the forest. Carbon estimation at forest of different elevation, aspect and location are recommended for further research. International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 72-84


2021 ◽  
Vol 944 (1) ◽  
pp. 012064
Author(s):  
Z A Harahap ◽  
Khairunnisa ◽  
I E Susetya ◽  
Y P Rahayu

Abstract This study aims to determine the carbon stock in seagrass communities in Central Tapanuli, North Sumatera, Indonesia. The research was conducted from July to August 2020 in the coastal areas of Hajoran and Jago Jago. The parameters measured in this study were density, coverage, biomass, carbon content, and carbon stock in seagrass. Biomass analysis and carbon measurement are divided into the top (above-ground biomass) and the bottom substrate (below-ground biomass). Carbon measurements are conducted using the loss on ignition (LOI) approach. The results showed that the seagrass ecosystem on the coast of Central Tapanuli Regency, which was covered by monospecies Enhalus acoroides, was in a less healthy condition with a cover percentage of 30.3-33.3% and a density of 59-67 shoots/m2. Above-ground and below-ground seagrass biomass reached 140.19-188.72 g/m2 and 368.13-423.69 g/m2 respectively, while carbon stock reached 70.57-94.86 g Corg/m2 and 18731-19603 g Corg/m2 and total standing stock range 257.87-290.90 g Corg/m2. The data obtained from this research can be used as a database to see the potential of seagrass beds as storage of CO2 and as an effort to mitigate and adapt to climate change.


2020 ◽  
Author(s):  
Sophie Drexler ◽  
Axel Don

<p>The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.</p><p>Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha<sup>-1</sup>. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha<sup>-1 </sup>was estimated, but with high uncertainty.</p><p>Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha<sup>-1</sup> year<sup>-1</sup> over a 20-year period. Additionally, up to 9.4 Mg C ha<sup>-1</sup> year<sup>-1</sup> could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha<sup>-1</sup> more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.</p>


1970 ◽  
Vol 3 ◽  
pp. 20-29
Author(s):  
Bishnu P Shrestha

This study was carried out to quantify total carbon sequestration in two broad leaved forests (Shorea and Schima-Castanopsis forests) of Palpa district. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling. Biomass was calculated using allometric models. Soil samples were taken from soil profile upto 1 m depth for deep soil and up to bed rock for shallow soils at the interval of 20 cm. Walkey and Black method were applied for measuring soil organic carbon. Total biomass carbon in Shorea and Schima-Castanopsis forest was found 101.66 and 44.43 t ha-1 respectively. Soil carbon sequestration in Schima-Castanopsis and Shorea forest was found 130.76 and 126.07 t ha-1 respectively. Total carbon sequestration in Shorea forest was found 1.29 times higher than Schima-Castanopsis forest. The study found that forest types play an important role on total carbon sequestration. Key Words: Carbon sequestration, Shorea forest, Schima-Castanopsis forest, Biomass carbon, Soil carbon DOI: 10.3126/init.v3i0.2424 The Initiation Vol.3 2009 p.20-29


2020 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Budiadi Budiadi

Konservasi karbon merupakan salah satu tindakan penting dalam rehabilitasi pesisir, khususnya pesisir selatan Pulau Jawa dengan keunikan ombak yang besar, salinitas tinggi dan sedimen beragam. Penelitian dilaksanakan untuk menduga simpanan karbon dalam berbagai bagian pada areal pesisir tersebut, yang terdiri dari tapak tergenang (tegakan mangrove 14 tahun jenis Avicennia/AV, Rhizophora/RH dan campuran/MX, lahan sedimen/SD, rumput/GR) dan tapak kering berpasir tegakan Casuarina equisetifolia/CS umur 18 tahun. Tiga sampai sembilan petak ukur dibuat untuk pengamatan dan pengukuran vegetasi, serta pengambilan sampel tanah (kedalaman 0-20, 20-40 dan 40-60 cm), dan pengukuran tegakan. Biomasa pohon diestimasi dengan mengkonvesri diameter batang (DBH) menggunakan persamaan alometrik. Biomasa pohon dirubah menjadi karbon tersimpan menggunakan berat jenis kayu yaitu 0,464 untuk above-ground (AGC), dan 0,39 untuk below-ground (BGC), serta untuk menduga biomasa karbon total (TBC). Karbon organik tanah (COT) dianalisis secara terpisah, dan digabungkan dengan karbon biomasa untuk memperkirakan simpanan karbon dalam ekosistem. Hasil penelitian menunjukkan variasi yang tinggi dari pertumbuhan dan kerapatan pohon, khususnya pada tegakan mangrove, dengan kemampuan regenerasi yang rendah. Tidak ditemukan perbedaan yang nyata dari simpanan karbon pada biomasa antara tegakan mangrove dengan Casuarina. Rerata TBC pada mangrove adalah 46,08 Mg C/ha, sedikit lebih rendah daripada CS (51,50 Mg C/ha). Di bawah tanah (hingga kedalaman 60 cm), tapak tergenang (AV, RH, MX, SD dan GR) secara nyata menyimpan COT lebih besar daripada tapak kering (CS). Kedalaman tanah secara nyata mempengaruhi COT, namun pada tapak tergenang semakin dalam tanah maka COT semakin besar, sedangkan tren sebaliknya pada tapak kering. Perkiraan total karbon tersimpan adalah 248.52 (±87.21) Mg C/ha, dengan terendah pada CS (94.46 Mg C/ha) dan tertinggi pada MX (324.77 Mg C/ha). Rehabilitasi pesisir berpeluang meningkatkan simpanan karbon ekosistem karena adanya adanya biomasa pohon, dibandingkan tapak terbuka yakni SD dan GR. Pada tapak tergenang/tegakan mangrove sebagian besar simpanan karbon berupa COT, dan lebih sedikit ditemukan pada CS. Perbedaan karakteristik simpanan karbon ini memerlukan penanganan atau konservasi yang berbeda, tetapi sama-sama membutuhkan rehabilitasi dan regenerasi buatan yang intensif. Carbon Stock Estimation in the South Coastal Rehabilitation Area of Java IslandAbstractCarbon conservation is one of important actions for coastal rehabilitation, in particular in the south coast of Java Island with its unique characteristics of strong tide, high salinity and diverse substrates. The research aimed to estimate carbon stocks from various carbon pools in the coast rehabilitation area, including wetland sites (14-year-old mangroves of Avicennia/AV, Rhizophora/RH and mix mangrove/MX, mudflat-sediment/SD, grassland/GR) and dry-sandy site of 18-year-old Casuarina equisetifolia/CS. Three to nine plots were established for observing and measuring vegetation, as well as taking soil sample at 0-20 cm, 20-40 cm, 40-60 cm depths. Tree biomass were estimated by converting treestem diameter using allometric equation. The tree biomass were converted into tree carbon using carbon density of 0.464 for aboveground (AGC), and 0.39 for below-ground (BGC), and to estimate total biomass carbon (TBC). Soil organic carbon (SOC) was analyzed separately, and combined with biomass carbon to estimate total carbon stock in the ecosystems. High variation of tree growth and density were found, especially in mangrove stands, with a low level of natural regeneration. No significant difference of carbon stock in biomass between mangroves and Casuarina was observed. Average TBC in mangroves (46.08 Mg C/ha) was slightly lower than in CS (51.50 Mg C/ha). In below ground (up to 60 cm depth), wetland sites (AV, RH, MX, SD and GR) significantly stored more SOC than dry land (CS). Soil depth significantly affected SOC, but in wetland sites deeper soil contained more carbon than upper, while an opposite trend was observed in CS. Estimated total carbon stock in the coast was 248.52 (±87.21) Mg C/ha, with the lowest in CS (94.46 Mg C/ha) and highest in MX (324.77 Mg C/ha). Rehabilitation activities in the coast possibly improve carbon stock in the ecosystems due to tree biomass, compared to open sites of SD and GR. In the wetland or mangroves, most of carbon was observed as SOC, and less in the dry-land site. The different characteristics of carbon storage in the south coast need different conservation techniques, but both sites need intensive rehabilitation work and artificial regeneration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerong Wang ◽  
Yue Sun ◽  
Mo Zhou ◽  
Naiqian Guan ◽  
Yuwen Wang ◽  
...  

Abstract Background Herbs are an important part of the forest ecosystem, and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances. Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone, this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning. Results The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity, they were mainly determined by seasonal changes. Across the entire growing season, the species with the highest importance values in thinning treatments included Carex pilosa, Aegopodium alpestre, Meehania urticifolia, and Filipendula palmata, which dominated the herb layer of the coniferous and broad-leaved mixed forest. The number of species, Margalef index, Shannon-Wiener index and Simpson index all had their highest values in May, and gradually decreased with months. Pielou index was roughly inverted “N” throughout the growing season. Thinning did not increase the species diversity. Thinning can promote the total biomass, above- and below-ground biomass. The number of plants per unit area and coverage were related to the total biomass, above- and below-ground biomass. The average height had a significantly positive correlation with herb biomass in May but not in July. However, it exerted a significantly negative correlation with herb biomass in September. The biomass in the same month increased with increasing thinning intensity. Total herb biomass, above- and below-ground biomass showed positive correlations with Shannon-Winner index, Simpson index and Pielou evenness index in May. Conclusions Thinning mainly changed the light environment in the forest, which would improve the plant diversity and biomass of herb layer in a short time. And different thinning intensity had different effects on the diversity of understory herb layer. The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.


2018 ◽  
Vol 6 (2) ◽  
pp. 51
Author(s):  
Kristian Gomos Banjarnahor ◽  
Agus Setiawan ◽  
Arief Darmawan

Carbon dioxide (CO2) is a greenhouse gas that could increase earth temperature. Through the photosynthesis process, plants absorb CO2 then convert it into carbohydrates, then sequester it in the body of plants. The purpose of the study is to estimate the changes in the carbon stock at the Arboretum University of Lampung. The methods used were stock difference by counting the carbon changes or difference between carbon stored in 2010 and 2016. While the stand biomass estimation measured by trees general allometric equations with non-destructive sampling. The results showed that the total carbon was 46% of the total biomass. Carbon stock in 2016 were about 226.75 ton/ha, showing an increase of 59.72% or 84.78 ton/ha compared to in 2010’s. The increase was due to additional growth of 804 trees as a result of plantation activity and natural regeneration. Keywords: Arboretum, biomass, carbon, necromass, University of Lampung.


2018 ◽  
Vol 10 (3) ◽  
pp. 639-650
Author(s):  
. Khairunnisa ◽  
Isdradjad Setyobudiandi ◽  
Mennofatria Boer

ABSTRAKSalah satu upaya untuk mengurangi emisi gas karbon pemicu pemanasan global adalah dengan memanfaatkan vegetasi pesisir seperti lamun yang dikenal dengan istilah blue carbon. Penelitian ini bertujuan untuk mengetahui stok karbon pada padang lamun di Pesisir Timur Kabupaten Bintan, Kepulauan Riau sebagai upaya dalam mengurangi pemanasan global. Penelitian dilakukan di Berakit, Malang Rapat, dan Teluk Bakau mulai Januari – Juli 2017. Parameter yang diukur dalam penelitian ini adalah biomassa, kandungan karbon, dan stok karbon pada lamun. Analisis biomassa diukur dari berat kering lamun per satuan luas yang dibagi atas bagian atas dan bawah substrat, kandungan karbon diukur dengan metode Walkley and Black, stok karbon diukur dengan memperhatikan kandungan karbon dan biomassa lamun. Hasil penelitian menunjukkan ekosistem lamun di pesisir timur Kabupaten Bintan ditumbuhi oleh C. rotundata, C. serrulata, E. acoroides, H. uninervis, H. pinifolia, H. ovalis, T. hemprichii, T. ciliatum dan S. isoetifolium dengan kondisi yang relatif baik.  Persentase biomassa dan karbon yang berada di bawah substrat lebih besar dibanding biomassa yang berada di atas substrat, sehingga ketika bagian pelepah dan daun lamun lepas baik karena tindakan manusia ataupun alam lamun masih tetap mampu menyimpan karbon. Padang lamun di pesisir sebelah timur Kabupaten Bintan memiliki potensi dalam menyerap dan menyimpan karbon yakni sebesar 2431.33 ton C dengan E. acoroides sebagai spesies yang mampu menghasilkan biomassa terbesar dan kandungan karbon tertinggi, meski jumlah tersebut tidak dapat dijadikan acuan apakah lamun memiliki potensi yang tinggi ataupun tidak karena hingga saat ini belum ada nilai standardnya. ABSTRACTOne of the solutions to reduce carbon gas emissions that triggered global warming is to utilize coastal vegetation such as seagrass that known as blue carbon. This research was aimed to determine stock carbon on seagrass in the east coast of Bintan Regency, Kepulauan Riau Province as an effort to reduce global warming.  The research was conducted in Berakit, Malang Rapat, and Teluk Bakau from January to July 2017. The parameters measured in this research were biomass, carbon content, and carbon stock on seagrass. The anylisis of the biomass was obtained from the dry weight per unit area, the carbon content was obtained by Walkley and black method, the carbon stock was obtained by the measurement of the biomass and carbon content. Based on the observation, seagrass ecosystem in east coast of Bintan was palnted by C. rotundata, C. serrulata, E. acoroides, H. uninervis, H. pinifolia, H. ovalis, T. hemprichii, T. ciliatum, dan S. isoetifolium. The below ground biomass and carbon percentation were higher that the aboveground parts so when the leaves are released either because of human or natural actions, seagrass is still able to store carbon. Seagrass beds on the east coast of Bintan Regency have the potential to absorb and store carbon which is equal to 2431.33 tons C as E. acoroides being the species which capable of producing the highest biomass and highest carbon content, although this number cannot be used as a reference whether seagrass has high potential or no because until now there has been no standard value. 


Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


2018 ◽  
Vol 6 ◽  
pp. 61-67
Author(s):  
Karishma Gubhaju ◽  
Dipesh Raj Pant ◽  
Ramesh Prasad Sapkota

Forests store significant amount of atmospheric carbon in the form of above and below ground biomass and the amount of carbon stored in forests differs along spatial continuum which provides important information regarding forest quality. This study was carried out to estimate the carbon stock of Shree Rabutar Forest of Gaurishankar Conservation Area, Dolakha, Nepal. In total, 20 circular sampling plots with an area 250 m2 were randomly laid in the study area. Ten tree species were observed in the sampling plots laid in the forest. The higher values of density, frequency, abundance and basal area were observed for Rhododendron arboreum, Alnus nepalensis, Pinus roxburghii and Pinus wallichiana. On the basis of Important Value Index, the dominant tree in the forest was Alnus nepalensis followed by Rhododendron arboreum and Pinus roxburghii. Shannon Index of general diversity of trees in the forest was 0.74 with equal value of Evenness Index, whereas the index of dominance was low (0.22) in the forest. Mean biomass of the forest was 464.01±66.71 tonha-1 contributed by above ground tree biomass (384.44 tonha-1), leaf litter, herbs and grasses biomass (2.69±0.196 tonha-1) and below ground tree biomass (76.88±11.13 tonha-1). Mean carbon stock was 262.77±30.79 tonha-1 including soil carbon stock 44.69±2.25 tonha-1. Individuals of trees with 20-30 cm DBH class were observed in maximum number, which shows that the forest has high potential to sequester carbon over time. Carbon stock estimation and forest management can be one of the potential strategies for climate change mitigation especially through carbon dioxide absorption by the forests.


Sign in / Sign up

Export Citation Format

Share Document