scholarly journals Performance Testing of Foldable Electric Powered Wheelch

2020 ◽  
Vol 3 (1) ◽  
pp. 115-122
Author(s):  
Raj Kumar Chaulagain ◽  
Gaurav Dahal ◽  
Alkesh Nepal ◽  
Amrit Tiwari ◽  
Pramod Regmi

This paper aims to design and test a foldable, lightweight wheelchair propelled by a pair of electric motors. Starting from literature review, the research team carried out the design and solid modeling of proposed wheelchair. Solidworks software was used to make the computer model. The wheelchair frame comprised of a chair like frame with two pairs of wheels on front and back. The defined electric wheelchair is completed with the coordination of manual and electric system. A pair of electric motor is fitted on wheels at backside which are controlled by the electronic controller powered by the battery. The folding mechanism developed on the wheelchair was aimed for ease of transport and storage. The frame material was selected to be aluminum alloy. Lithium ion battery and geared electric motors were used in the prototype and motion control was done by joystick. Locking mechanism was used for frame locking during operation. The prototype was subjected to different tests. The unfolded dimensions of wheelchair were 850mm × 620mm × 1400mm (0.738m3) and whereas the folded dimensions were 1100mm × 620mm × 520mm (0.354m3) that resulted 52.03% reduction in volume. The mass of wheelchair was measured to be 22kg. The tested data of wheelchair was found to be 10 km approximately.

2021 ◽  
pp. 1-11
Author(s):  
Vimal Singh Bisht ◽  
Mashhood Hasan ◽  
Hasmat Malik ◽  
Sandeep Sunori

For estimation of the RUL (Remaining useful life) of Lithium ion battery we are required to do its health assessment using online facilities. For identifying the health of a battery its internal resistance and storage capacity plays the major role. However the estimation of both these parameters is not an easy job and requires lot of computational work to be done. So to overcome this constraint an easy alternate way is simulated in the paper through which we can estimate the RUL. For formation of a linear relationship between health index of the battery (HI) and its actual capacity used of power transformation method is done and later on to validate the result a comparison study is done with Pearson & Spearman methods. Transformed value of Health Index is used for developing a neural network. The results demonstrated in the paper shows the feasibility of the proposed technique resulting in great saving of time


2019 ◽  
Vol 26 (2) ◽  
pp. 85-92
Author(s):  
Michał Kuźniar ◽  
Marek Orkisz

Abstract The paper describes the selection of a distributed propulsion for the AOS H2 motor glider (selection of engines, their number, and propellers) and determination of its performance. This analysis is related to the research conducted on environment friendly and hybrid propulsions in various research centres. The main aim of the analyses conducted is to increase the performance of vehicles powered by electric motors. The batteries have a low density of energy, i.e. the ratio of mass to cumulated energy. Instead of a battery set, it is possible to apply a hybrid-electric system, where the combustion engine works as a generator or an electric-hydrogen generator, where the hydrogen cell supports a small set of batteries. One of such flying vehicles, fitting in this trend, is the AOS H2 motor glider built at the Rzeszow University of Technology in cooperation with other universities. It is a hybrid aircraft, equipped with a hydrogen cell, which together with a set of batteries is a source of electricity for the Emrax 268 electric motor. To increase the vehicle's performance (the range and flight duration), it is possible to use a distributed propulsion. This type of propulsion consists in placing many electric motors along the wingspan of the aircraft. Appropriate design of such a system (propeller diameters, engine power, number of engines) can improve the aerodynamic and performance parameters of the airframe. An analysis of the performance for the selected flight trajectory for this propulsion variant was conducted and compared to the performance of the AOS H2 motor glider equipped with traditional propulsion. The consumption of hydrogen was also determined for both systems. The results obtained were presented in the diagrams and discussed in the conclusions.


2013 ◽  
Vol 401-403 ◽  
pp. 2205-2208 ◽  
Author(s):  
Huai Zhong Li ◽  
Tong Jing ◽  
Hong Zhang

Wind energy has become a leading developing direction in electric power. The high cost associated with turbine maintenance is a key challenging issue in wind farm operation as wind turbines are hard-to access for inspection and repair. Analysis of an onshore wind farm is carried out in this paper in terms of the operation, failure, and maintenance. Failures are categorized into three classes according to the downtime. It is found that the pitch, gearbox and generator have the most amount of downtime, while the most number of failures is from the pitch and electric system. A discrete-event model is developed by using Arena to simulate the operation, failure occurrence, and maintenance of the wind turbines, with an aim to determine the main factors influencing maintenance costs and the availability of the turbines in the wind farm.


2021 ◽  
Author(s):  
Arpan Chatterjee ◽  
Perry Y. Li

Abstract The Hybrid Hydraulic-Electric Architecture (HHEA) was proposed in recent years to increase system efficiency of high power mobile machines and to reap the benefits of electrification without the need for large electric machines. It uses a set of common pressure rails to provide the majority of power hydraulically and small electric motors to modulate that power for precise control. This paper presents the development of a Hardware-in-the-loop (HIL) test-bed for testing motion control strategies for the HHEA. Precise motion control is important for off-road vehicles whose utility requires the machine being dexterous and performing tasks exactly as commanded. Motion control for the HHEA is challenging due to its intrinsic use of discrete pressure rail switches to minimize system efficiency or to keep the system within the torque capabilities of the electric motor. The motion control strategy utilizes two different controllers: a nominal passivity based back-stepping controller used in between pressure rail switches and a transition controller used to handle the event of a pressure rail switch. In this paper, the performance of the nominal control under various nominal and rail switching scenarios is experimentally evaluated on the HIL testbed.


2014 ◽  
Vol 554 ◽  
pp. 551-555
Author(s):  
Nurul Muthmainnah Mohd Noor ◽  
Salmiah Ahmad ◽  
Sharul Naim Sidek

The aim of this study is to perform the experimental verification on the fuzzy-based control designed for wheelchair motion. This motion control based on the eye movement signals using electrooculograhphy (EOG) technique. The EOG is a technique to acquire the eye movement data from a person, i.e tetraplegia, which the data obtained, can be used as a main communication tool. This study is about the implementation of the designed controller using PD-type fuzzy controller and tested on the hardware of the wheelchair system using the eye movement signal obtained through EOG technique as the motion input references. The results obtained show that the PD-type fuzzy logic controller designed has successfully managed to track the input reference for linear motion set (forward and backward direction) by the EOG signal.


Sign in / Sign up

Export Citation Format

Share Document