scholarly journals Assessment of soil fertility status of Agriculture Research Station, Belachapi, Dhanusha, Nepal

2016 ◽  
Vol 2 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Shahabuddin Khan ◽  
Sushila Joshi ◽  
Buddhi Bahadur Pant

Soil test-based fertility management is important for sustainable soil management. This study was carried out to determine the soil fertility status of the Agriculture Research Station, Belachapi, Dhanusha, Nepal. Using soil sampling auger 25 soil samples were collected randomly from a depth of 0-20 cm. Soil sampling points were identified using GPS device. Following standard methods adopted by Soil Science Division laboratory, Khumaltar, the collected soil samples were analyzed to find out their texture, pH, N, P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu, Mn and organic matter status. The soil fertility status maps were made using Arc-GIS 10.1 software. The observed data revealed that soil was grayish brown in colour and sub-angular blocky in structure. The sand, silt and clay content were 36.03±3.66%, 50.32±2.52% and 25.42±2.25%, respectively and categorized as eight different classes of texture. The soil was acidic in pH (5.61±0.14). The available sulphur (0.73±0.09 ppm) status was very low, whereas organic matter (1.34±0.07%), available boron (0.56±0.10 ppm), available zinc (0.54±0.22 ppm) and available copper (0.30±0.01 ppm) were low in status. The extractable potassium (95.52±13.37 ppm) and extractable calcium (1264.8±92.80ppm) exhibited medium in status. In addition, available phosphorus (33.25±6.97 ppm), available magnesium (223.20±23.65 ppm) and available manganese (20.50±2.43 ppm) were high in status. Furthermore, available iron (55.80±8.89 ppm) status was very high. To improve the potentiality of crops (maize, rice, wheat etc.) for studied area, future research strategy should be made based on its soil fertility status.

2019 ◽  
Vol 52 (1) ◽  
pp. 23
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Parashuram Bhantana ◽  
Amit Prasad Timilsina ◽  
Anisur Rahman Ansari ◽  
...  

<p>Soil fertility evaluation has been considered as a most effective tool for sustainable planning of a particular region. This study was conducted to determine the soil fertility status of the Agricultural Research Station, Pakhribas, Dhankuta, Nepal. The total 60 soil samples were collected randomly at a depth of 0-20 cm by using the soil sampling auger. For identification of soil sampling points A GPS device was used. The collected samples were analyzed for their texture, pH, OM, N, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, Ca, Mg, S, B, Fe, Zn, Cu and Mn status following standard methods in the laboratory of Soil Science Division, Khumaltar. The Arc-GIS 10.1 software was used for soil fertility maps preparation. The observed data revealed that soil was dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/6) in colour, and single grained, granular and sub-angular blocky in structure. The sand, silt and clay content were 56.61±0.97%, 27.62±0.56% and 15.77±0.58%, respectively and categorized as loam, sandy loam and sandy clay loam in texture. The soil was very acidic in pH (4.66±0.07) and very low in available sulphur (0.53±0.11mg/kg), available boron (0.24±0.07mg/kg). The organic matter (1.34±0.07%), total nitrogen (0.09±0.003mg/kg), available calcium (605.70±31.40mg/kg), available magnesium (55.96±4.67mg/kg) and available zinc (0.54±0.22mg/kg) were low in status. Similarly, available potassium (115.98±9.19 mg/kg) and available copper (1.13±0.09 mg/kg) were medium in status. Furthermore, available manganese (36.31±2.82mg/kg) was high, whereas available phosphorus (105.07±9.89 mg/kg) and available iron (55.80±8.89 mg/kg) were very high in status. The soil fertility management practice should be adopted based on the determined status in the field for the sustainable production of crops. The future research strategy should be built based on the soil fertility status of the research farm.</p>


2018 ◽  
Vol 3 (02) ◽  
pp. 108-115
Author(s):  
S. P. Vista ◽  
T. B. Ghimire ◽  
T. S. Rai ◽  
B. S. Kutu ◽  
B. K. Karna

Potato is a staple food crop in high hills and mountains and a major vegetable throughout the country and one of the most important cash generating crops in Nepal. With the efforts undertaken by research and extension sectors, its productivity has significantly increased in last twenty years. However, this is not sufficient for increasing population of the country. Considering its potentiality for income, employment, industrial products, export and processing, appropriate technologies are urgent.Soil fertility evaluation is the most basic decision making tool for the sustainable soil nutrient management. Soil fertility studies and mapping is an effective way to diagnose soil status and recommend as per the need of the nutrient to particular crop in the area. This research aims to assess and prepare soil nutrient map of potato super zone, Kavrepalanchowk in Nepal. The specific objectives of the research were to assess soil texture, pH and organic matter status and simultaneously prepare soil fertility map of the potato super zone. A total of 202 soil samples were collected and nutrients were analyzed using standard procedure in the soil laboratory. Composite soil samples were collected from 6 to 10 different spots of the area at 0-20 cm depth by using soil auger. The GPS location of each soil sampling point was noted. The soil sampling point of each zone was determined by studying various aspects (area, slope, colour, texture, etc.) of the study area. Based on the nutrient status, nutrient maps were prepared and presented. Soil fertility maps were prepared by observing the critical nutrients required for the specific crops and by giving those nutrients certain ranking based on the nutrients role for the crop. The soil of Potato super zone was mostly found to be silty loam, moderately acidic (pH 5.9), medium in organic matter content (2.67%) and total nitrogen (0.13%), high in available phosphorus content (56 kg/ha) and available potassium (356kg/ha). There is also sandy loam, loam and silty clay loam types of soil in the area. Soil fertility maps were prepared by setting criteria based on nutrient status that were tested in the laboratory and on the basis of nutrients that are critical for each crops of the super zones. Vegetable super zone soil was found having medium (50%) and high (30%) fertility status. Based on the soil analysis report, it could be concluded that the soils of potato super zone is fair enough for cultivating potato crop at the moment.


2018 ◽  
Vol 5 (3) ◽  
pp. 434-440
Author(s):  
Fitra Syawal Harahap ◽  
Abdul Rauf ◽  
Benny Hidayat ◽  
Hilwa Walida ◽  
Jamidi ◽  
...  

Organic materials in situ remaining paddy crops in paddy fields are much abandoned by farmers. Most of the remaining harvested are burned, stacked in the cultivated, or used for animal feed or as a fungus. Straw compost is source of Potassium (K) and Silica (Si). About 80% of K absorbed by plants is in the straw. The return of straw to the soil may slow the impoverishment of Potassium (K) in the soil. This study aims to find out how the availability of phosphorus (P) and potassium (K) nutrients by giving organic matter as soil fertility status in paddy fields in Beringin Subdistrict, Deli Serdang Regency and to review management alternatives that are in accordance with the soil fertility status in the Central Land Rice fields in Beringin Subdistrict, Deli Serdang Regency. This research was carried out in the Central Rice Field in Beringin Subdistrict, Deli Serdang Regency ± 11 meters above sea level. The taking of soil samples was taken in the upper layer at the top soil depth of 0-20 cm, 20-40 cm and the coordinates were recorded using GPS (Global Positioning System). While information on land management is obtained by direct observation in the field and in-depth interviews with farmers in snow ball which aims to obtain complete information from farmers. Soil samples that have been taken in the field are then analyzed in the laboratory. Soil chemical properties analyzed in laboratory soil chemical properties analyzed at P2O5 Bray II (ppm) laboratory K2O Hcl 25% (mg / 100g). To determine the chemical properties of soil with certain criteria that have been determined. Based on Technical Guidelines for Evaluation of Soil Fertility The direction of management of soil fertility needs to be added to organic matter and phosphorus fertilization regularly so that soil fertility can be sustainable. Further research is needed in order to find out the addition of phosphorus fertilizer and organic matter in each unit of land.


2018 ◽  
Vol 4 ◽  
pp. 33-47 ◽  
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Kailash Prasad Bhurer ◽  
Jeet Narayan Chaudhary ◽  
Md Farhat Ali ◽  
...  

Soil fertility assessment is a key for sustainable planning of a particular area. Thus, the present study was conducted to assess the soil fertility status of the Regional Agricultural Research Station, Parwanipur, Bara, Nepal. The study area is situated at the latitude 27°4’40.9’’N and longitude 84°56’9.85”E at 75masl altitude. Altogether 76 soil samples were collected based on the variability of land at 0-20 cm depth. The texture, pH, OM, total N, available P2O5, K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn content in the samples were determined following standard analytical methods. Arc-GIS 10.1 was used for soil fertility mapping. The soil structure was angular blocky, and varied between grayish brown (10YR 5/2) and dark grayish brown (10YR 4/2) in color. The sand, silt and clay content were 24.41±0.59%, 54.57±0.44% and 21.03±0.32%, respectively and categorized as silt loam and loam in texture. The soil was moderately acidic in pH (5.67±0.09), low in organic matter (0.74±0.04%) and available Sulphur (0.8± 0.1 ppm). The total nitrogen (0.06±0.001%), available boron (0.59±0.08ppm) and available zinc (0.51±0.05ppm) were low. Furthermore, available potassium (50.26±2.95ppm), available calcium (1674.6±46.3ppm) and available magnesium (175.43± 8.93ppm) were medium. Moreover, available copper (1.36±0.06 ppm) and available manganese (16.52±1.12 ppm) were high, while, available phosphorus (77.55±6.65 ppm) and available iron (85.88±7.05 ppm) were found high. It is expected that the present study would help to guide practices required for sustainable soil fertility management and developing future agricultural research strategy in the farm.


2018 ◽  
Vol 6 (2) ◽  
pp. 142-151
Author(s):  
Nabin Rawal ◽  
Keshav Kumar Acharya ◽  
Chet Raj Bam ◽  
Kamal Acharya

Soil fertility degradation has become a major problem for agricultural management in Nepal. A detailed soil fertility status of different VDCs of Sunsari district was investigated during 2015 and soil related crop production constraints were identified for proper utilization of agricultural land. Total 131 numbers of geo-referenced (GPS based) composite surface soil samples (0-15 cm) were collected from eleven Village Development Committees of Sunsari District. The sample points were recorded with a differential global position system and mapped using Geographic Information System (GIS). Soils were analyzed for mechanical composition, pH, organic matter, total nitrogen, available phosphorus, potassium and micronutrients like Boron, Zinc, Copper and Iron. About 38.9% soils were found to be silty clay loam, 20.6% were silty clay, 19.1% were clay loam and 21.4% were of other textural classes. Most of the soils were acidic and only few were neutral and slightly alkaline in nature. Soil Organic matter varies from 3.57% to 0.28% with a mean value of 1.53 %. The mean total nitrogen, available phosphorus, potassium was found to be 0.08%, 44.37 kg/ha and 128.04 kg/ha respectively. The mean hot water extractable Boron, DTPA extractable Copper, Zinc and Iron was found to be 0.14, 0.06, 0.15 and 10.71 mg/kg respectively. Thematic maps were prepared for each soil parameters using ArcGis10.1 software and ordinary Kriging interpolation was used in order to predict values for not sampled locations. The fertility maps provide the readymade source of information about soil fertility status and serve as the decision making tool for successful raising and development of crops. It can be concluded from the above study that GPS and GIS based soil fertility maps helps farmers, scientists, planners and students in providing soil test based fertilizer recommendation for intensive and sustainable site specific crop production.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 142-151 


Author(s):  
Kasthuri Rajamani ◽  
C. Sudhakar ◽  
N. Hari ◽  
M. Venkata Ramana

This study was conducted to determine the soil fertility status of the Agricultural Research Station, Tandur of Professor Jayashankar Telangana State Agricultural University (PJTSAU), Vikarabad District, Telangana. To identify the soil sampling points, GPS device was used and collected total of 60 soil samples on grid-based method at a depth of 0–15 cm. The collected samples were analyzed for pH, EC, OC, N, P2O5, K2O, Zn, Cu, Fe and Mn status by following standard methods in the laboratory of Regional Agricultural Research Station, Palem, PJTSAU, Nagarkurnool District of Telangana, and Arc-GIS software was used further to prepare soil fertility maps. Around 37.5% of samples fall in neutral pH, whereas 62.5% samples were found as moderately alkaline reactions and entire farm soils were non-saline. Among the analyzed soil samples, 37.29% samples were in low organic carbon content, and rest of the samples i.e.,62.71% have medium organic carbon content and total samples were low in available N content (< 280 kg ha-1). The analyzed farm samples were medium to high in available phosphorus and potassium (28.67 & 71.33 % of P2O5 and 16.96 & 83.04 % of K2O respectively) content. In contrast, the micronutrients (Zn, Cu, Fe & Mn) exceeded their sufficiency level and suggested for amelioration measures to enhance research efficacy in the farm and to build future research strategies based on the determined soil fertility status.


2016 ◽  
Vol 41 (4) ◽  
pp. 735-757 ◽  
Author(s):  
NC Shil ◽  
MA Saleque ◽  
MR Islam ◽  
M Jahiruddin

Laboratory studies on soil fertility evaluation was carried out across major agroecological zones (AEZs) of Bangladesh to know the nutrient status of soils and to relate those with soil properties like pH, organic matter, CEC, and clay content. Thirty five composite soil samples were collected from intensive crop growing sites, which covered 17 AEZs of Bangladesh. After proper processing, the samples were analyzed for texture, pH, organic carbon, CEC, exchangeable cations (K, Ca, Mg and Na), total N, available P and S following standard methods. The textural class of the soils collected from AEZ 12 and 13 appeared to be mostly clay. Clay loam soil was found in AEZ 4, 8, 9, 11, 25 and 28. Loamy soil was seen in AEZ 1 while AEZ 22, 23 and 29 were mostly sandy textured. The results revealed that 65.7% of the tested soil was acidic while 25.7% was alkaline in nature. All the tested soils showed lower pHKCl compared to pHH2O thus possessed negative charge. About 68.6% of the collected soils contained low (1.10-1.70%) level of organic matter, 25.7% soils retained it at medium level (1.71-2.40) and 5.7% soils at very low level (<1.0%). All the tested soils appeared to be deficient (< 0.12%) in nitrogen content. 68.6% soil samples had the low level of available P while only 8.6% retained it an optimum amount. About 80% of the tested soils contained low level of available S (7.9- 14.7 mg kg -1) although coastal regions soils hold higher amount of available S. High CEC (20-38 cmol kg-1) was found in clay rich soils of AEZ 10, 11, 12, and 13. Study revealed that 40% of the collected soils were very low, 31.4% were low, 8.6% each of medium and optimum, and 11.4% contained high level of exchangeable K. The calcareous soils (AEZ 10, 11, 12 and 13) contained very high level of Ca. Non calcareous soils also showed fairly good level of Ca content except AEZ 1, 3, 23 and 29. Sandy textured soils of greater Dinajpur, Rangpur, Moulvibazar showed lower level of exchangeable Mg. About 86% of the tested soils had the lower (< 2%) potassium saturation percentage (KSP), which needs K application for sustainable crop production. Estimate showed that 44% variability for CEC may be attributed by clay content and the relationship was significant (p = 0.05). Again, 50.4 and 65.6% variability in exchangeable K and Mg, respectively may be governed by clay content of the soils, while such relationship for Ca was non-significant. CEC may contribute 62.2, 92.3 and 83.9% variability for exchangeable K, Ca and Mg content in soils, respectively. The fertility status of most of the studied soils (except AEZ 10, 12, 13 and to some extent 11) appeared to be low to very low, which demand judicious management in order to achieve food security and to conserve the soil fertility.Bangladesh J. Agril. Res. 41(4): 735-757, December 2016


2017 ◽  
Vol 9 (4) ◽  
pp. 2315-2326
Author(s):  
T. V. Jyothi ◽  
N. S. Hebsur

Field studies were conducted at farmer’s fields in Jodalli (Kalghatgi taluk) and Pale (Hubballi taluk) villages in 2012-13 and 2013-14, respectively to investigate the effect of NPK fertilizers on uptake of nutrients by Bt cotton and soil fertility status at harvest in Alfisol. Among the different treatment combinations, the application of 150:50:75 kg N:P2O5:K2O ha-1 (N3P1K2) recorded significantly (P=0.05) higher nitrogen (132.63 kg ha-1), phosphorus (31.26 kg ha-1) and potassium (128.94 kg ha-1) uptake by cotton. The interaction effect with respect to total micronutrients (Zn, Fe, Mn and Cu) uptake remained non significant at all the growth stages. Graded levels of fertilizers failed to exert significant impact on pH and electrical conductivity, soil organic carbon and available micronutrients during both the years of experimentation. The application of 100:50:50 kgN:P2O5:K2O ha-1 (N1P1K1) recorded significantly (P=0.05) highest available nitrogen (150.39 kg ha-1), available phosphorus (37.98 kg ha-1) and available potassium (230.99 kg ha-1) compared to rest of the treatments. The lowest available nitrogen (134.92 kg ha-1), available phosphorus (31.65 kg ha-1) and available potassium (217.63 kg ha-1) were recorded in treatment receiving 150:50:75 kg N:P2O5:K2O ha-1 (N3P1K2).


AgriPeat ◽  
2019 ◽  
Vol 19 (01) ◽  
pp. 1-14
Author(s):  
Administrator Journal

ABSTRACTThis study aims to determine the effect of the location distance from the river bank and the depth ofsoil layer to the soil chemical properties in the tidal land area. The study was conducted in April untilJune 2016 in the tidal areas of Bajarum village, District of Kota Besi, East Kotawaringin, CentralBorneo Province. The study used survey methods and soil sampling in the field, analysis of soilsamples in the laboratory and continued with analysis and description of data. Soil sampling wasconducted at distances of 250, 500, 750, 1.000, 1.250 and 1.500 meters from the Mentaya river bankat two depth soil layers (0 - 25 cm and 25 - 50 cm). The soil chemistry properties analyzed includedpH, cation exchange capacity (CEC), base saturation, organic C, N total, total P2O5, total K2O,alumunium and hydrogen exchangeable and soil fertility status. The results of study showed that: (1)The further distance of soil from the position of Mentaya river bank there is an increase of organic C,total P2O5, total N, total K2O, pH, CEC, base saturation and soil fertility status, on the contraryshowed a decrease in alumunium and hydrogen exchangeable. The limiting factor of soil fertility ismainly the low base saturation, besides that at some point observation also due to low CEC, totalP2O5 and total K2O. (2) Sub soil layer (25 - 50) cm has a higher pH and base saturation valuescompared to topsoil layer (0 - 25) cm. In contrast, topsoil layer has CEC, alumunium and hydrogenexchangeable, total P2O5, total K2O, total N and organic C values higher than sub soil layer.Keywords: distance from river, tidal soil, soil chemical properties.


Sign in / Sign up

Export Citation Format

Share Document