scholarly journals NO2 Concentration in Banepa Valley, Nepal

Author(s):  
Ahmad Kamruzzaman Majumder ◽  
V Krishna Murthy ◽  
Sanjay Nath Khanal ◽  
Dhiraj Giri

This study comprised of air quality monitoring during the day time at three municipalities of Banepa, Dhulikhel and Panauti(Known as Banepa Valley) in Kavre district of Nepal. The study was conducted in order to establish a baseline air quality data for those municipalities as the first time ever in the district. In each of those municipalities three air monitoring stations were established representing predominant industrial, commercial and residential areas. Nitrogen Dioxide (NO2) had been estimated from air sampling programme which spanned 7 months and a total of 126 days reflecting winter, premonsoon and monsoon seasons. Low Volume Air (LVA) Sampler and Personal air sampler were used for sampling. UV spectrophotometer was used for estimation of the NO2. The study found that during winter season the concentration of NO2 was more and among the areas commercial area found to be highest level pollution. The over all mean, minimum and maximum level of NO2 was found to be 24.62μg/m3, 11.26μg/m3, 91.20μg/m3 in the Banepa valley. The seasonal trend in pollution levels show that winter > pre-monsoon > monsoon. The pollution concentration trend noted among the areas was commercial > industrial > residential on almost all the occasions. This finding conclude that, most of the time NO2 level are below the National Ambient Air Quality Standards (NAAQS) and World Health Organization (WHO) guideline representing little risk at present in Banepa Valley however commercial area of Banepa is more polluted and is associated with higher NO2 concentration compared to other areas. Keywords: NO2, Nepal, Banepa, air quality, personal air sampler DOI: 10.3126/kuset.v4i1.2878 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 1-11

2012 ◽  
Vol 57 (1) ◽  
Author(s):  
SATTAR A. ◽  
M. RASHID ◽  
R. MAT ◽  
L. PUJI

Makassar has a strategic position as it is located in between the south and north in the provinces of South Sulawesi. Thus, the rapid growth of urbanization and industrialization within the area is unavoidable, resulting Makassar to be an area of mixed commercial–residential–industrial along with the problem of air pollution. Hence, it is important to monitor the quality of air in Makassar. This paper presents a preliminary survey of urban air quality in Makassar area based on SO2, CO, NO2, O3, Pb, and TSP (Total Suspended Particle) sampled over ten years period (2001 to 2010), while PM10was monitored for five years (2006 to 2010). The air quality data were obtained from measurements made by the Office of Ministry of Environment Sulawesi, Maluku and Papua and Environment Board of the Province of South Sulawesi as well as Environment agency of Makassar City. The average annual concentrations of SO2, CO, NO2, O3, Pb, TSP and PM10 recorded were 76 μg/m3, 1041 μg/m3, 43.2 μg/m3, 54.5 μg/m3, 0.7 μg/m3, 188 μg/m3, 54.6 μg/m3, respectively. Subsequently, these data are compared to the air quality threshold limits recommended by the Indonesia National Ambient Air Quality Standard (INAAQS) as well as guidelines of the World Health Organization (WHO).


2021 ◽  
Vol 898 (1) ◽  
pp. 012024
Author(s):  
Zhaoni Li ◽  
Jian Zheng

Abstract Research on air quality analysis is a hot field. Here we describe an analysis process based on cluster methods for the data of ambient air quality. In this paper, we use the process to cluster on the air quality data which from the National Urban Air Quality Report in December 2020 on the official website of the Ministry of Ecology and Environment of the People’s Republic of China. We find that cities in different clusters with different main pollutants and pollution levels. Ambient air quality analysis aims to provide guidance for reducing the impact of air pollution on health.


2021 ◽  
Author(s):  
Wojciech Nazar ◽  
Katarzyna Plata-Nazar

Abstract Background Decreased air quality is connected to a higher number of hospital admissions and an increase in daily mortality rates. Thus, Poles’ behavioural response to sometimes elevated air pollution levels is vital. The aim of this study was to carry out analysis of changes in air-pollution related information seeking behaviour in response to nationwide reported air quality in Poland. Methods Google Trends Search Volume Index data was used to investigate Poles’ interest in air pollution-related keywords. PM10 and PM2.5 concentrations measured across Poland between 2016 and 2019 were collected from the Chief Inspectorate of Environmental Protection databases. Pearson Product-Moment Correlation and the R2 correlation coefficient of determination were used to measure spatial and seasonal correlations between reported air pollution levels and the popularity of search queries. Results The highest PM10 and PM2.5 concentrations were observed in southern voivodeships and during the winter season. Similar trends were observed for Poles’ interest in air-pollution related keywords. All R2 coefficient of determination values were > 0.5 and all correlations were statistically significant. Conclusion Poland’s air quality does not meet the World Health Organisation guidelines. Also, the air quality is lower in southern Poland and during the winter season. It appears that Poles are aware of this issue and search for daily air quality data in their location. Greater interest in air quality data in Poland strongly correlates with both higher regional and higher seasonal air pollution levels.


1970 ◽  
Vol 46 (3) ◽  
pp. 389-398 ◽  
Author(s):  
MA Rouf ◽  
M Nasiruddin ◽  
AMS Hossain ◽  
MS Islam

Dhaka City has been affecting with severe air pollution particularly by particulate matter. The ambient air quality data for particulate matter were collected during April 2002 to September 2005 at the Continuous Air Quality Monitoring Station (CAMS) located at Sangshad Bhaban, Dhaka. Data reveal that the pollution from particulate matter greatly varies with climatic condition. While the level comes down the limit value in the monsoon period (April-October), it goes beyond the limit during non-monsoon time (November-March). The latest data show that during monsoon period PM 10 concentration varies from 50 μg/m3 to 80 μg/m3 and PM 2.5 concentration from 20 μg/m3 to 60 μg/m3 and during non monsoon period PM 10 varies from 100 μg/m3 to 250 μg/m3 and PM 2.5 varies from 70 μg/m3 to 165 μg/m3. The seasonal variation clearly indicates the severe PM 10 pollution during the dry winter season and also sometime during post-monsoon season in Dhaka City. Keywords: Air pollution; PM 2.5; PM 10; Air quality DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9049 BJSIR 2011; 46(3): 389-398


Author(s):  
AK Majumder ◽  
VK Murthy ◽  
RM Bajracharya ◽  
SN Khanal ◽  
KMN Islam ◽  
...  

The study comprised of air quality monitoring during the day time at three municipalities of Banepa, Dhulikhel and Panauti in Kavre district of Nepal. In each of the municipalities three air monitoring stations were established representing industrial, commercial and residential areas. Particulate Matter (PM2.5) has been estimated from air sampling programme which spanned 7 months and a total of 126 days reflecting all the three seasons. The study found that during winter season the concentration of PM2.5 was more and among the areas commercial area noted highest level pollution. The seasonal trend in pollution levels show that winter > pre-monsoon > monsoon. The pollution concentration trend noted among the areas was commercial > industrial > residential on almost all the occasions except at pre-monsoon season between industrial and residential area in Banepa. This finding concludes that, commercial area of Banepa is more defined and is associated with higher particulate matter concentration compared to other areas. DOI: http://dx.doi.org/10.3126/kuset.v8i1.6036 KUSET 2012; 8(1): 23-32


2020 ◽  
Vol 55 (2) ◽  
pp. 89-98
Author(s):  
Razib ◽  
AA Nayeem ◽  
MS Hossain ◽  
AK Majumder

Air quality in Dhaka city is gradually deteriorating due to increase of pollutants in air. This study aims to assess the concentration of particulate matter (PM) with an aerodynamic diameter ≤2.5 μm (PM2.5) and its relationship with meteorological parameters in highly polluted Dhaka city. Data for PM2.5 has been collected from the Air Now Department of State (AirNow DOS) and meteorological data from Bangladesh Meteorological Department (BMD). Study observed that 31.9% of hourly Air Quality Index (AQI) category was unhealthy while the percentage of ‘Good’ was very few. The maximum monthly average concentration was found to be 192.97±89.30 μg/m3 in the month of January while minimum average concentration was 29.98±19.37 μg/m3 in July. Besides, it also found that winter season had highest PM2.5concentration among all seasons. Moreover, the annual concentration was found to be 79.94±75.55 μg/m3 in 2017 which exceeded the National Ambient Air Quality Standard (NAAQS) and World Health Organization (WHO) standard. A number of meteorological factors are affecting to this variation. It is also found that rainfall is negatively strong and significantly correlated with the concentration of PM2.5, due to ambient dust are being settle down in the lithosphere. Annual concentration of PM2.5 was 5 times higher than standard level. Bangladesh J. Sci. Ind. Res.55(2), 89-98, 2020


Author(s):  
Tuo Zhang ◽  
Maogang Tang

The novel coronavirus (COVID-19) pandemic has provided a distinct opportunity to explore the mechanisms by which human activities affect air quality and pollution emissions. We conduct a quasi-difference-in-differences (DID) analysis of the impacts of lockdown measures on air pollution during the first wave of the COVID-19 pandemic in China. Our study covers 367 cities from the beginning of the lockdown on 23 January 2020 until April 22, two weeks after the lockdown in the epicenter was lifted. Static and dynamic analysis of the average treatment effects on the treated is conducted for the air quality index (AQI) and six criteria pollutants. The results indicate that, first, on average, the AQI decreased by about 7%. However, it was still over the threshold set by the World Health Organization. Second, we detect heterogeneous changes in the level of different pollutants, which suggests heterogeneous impacts of the lockdown on human activities: carbon monoxide (CO) had the biggest drop, about 30%, and nitrogen dioxide (NO2) had the second-biggest drop, 20%. In contrast, ozone (O3) increased by 3.74% due to the changes in the NOx/VOCs caused by the decrease in NOx, the decrease of O3 titration, and particulate matter concentration. Third, air pollution levels rebounded immediately after the number of infections dropped, which indicates a swift recovery of human activities. This study provides insights into the implementation of environmental policies in China and other developing countries.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


Sign in / Sign up

Export Citation Format

Share Document