scholarly journals PERFORMANCE OF DIFFERENT PHOTOVOLTAIC TECHNOLOGIES FOR AMORPHOUS SILICON (A-SI) AND COPPER INDIUM GALLIUM DI-SELENIDE (CIGS) PHOTOVOLTAIC MODULES

2022 ◽  
Vol 26 (1) ◽  
pp. 95-105
Author(s):  
Noor Jamel Kadia ◽  
◽  
Emad T. Hashim ◽  
Oday I. Abdullah ◽  
◽  
...  

In this work, the analysis of performance of two types of photovoltaic (PV) (Amorphous Silicon (a-Si) Copper Indium Gallium Diselenide (CIGS) technologies were achieved out under under Iraqi (Baghdad)climate conditions. The elevation of the selected site is 9 m above ground level. The experimental work covered the eight commercially available PV technologies. The two technologies that employed in this work are, Amorphous Silicon (a-Si) and Copper Indium Gallium Diselenide (CIGS). The total period of the experimental work was 7 months, and the data were analyzed simultaneously. Special attention is given to the influence of temperature and solar radiation the performance of the PV modules. Where, it was proposed a simple I-V curve test for PV modules. The results showed that the proposed system successfully experimentally extracted I-V curves of the selected two PV modules (amorphous and CIGS solar modules). The maximum values of power (Pmax) at solar radiation intensity 750 W/m² are 2.742 W, and 2.831 W for amorphous silicon and copper indium gallium di-selenide respectively. This is occurred because the lowest solar module operating temperature (19 oC and 17 oC for solar radiation 750 and 1000 W/m2 respectively) and ambient temperature (7 oC) and for Jan., 2021 than other months. Consequently, the same behavior for the two modules at solar irradiance 1000 W/m2 with the highest power value; 2.680 W, and 3.198 W of amorphous silicon and copper indium gallium di-selenide respectively. Furthermore, the minimum values of power (Pmax) at solarradiation intensity 750 W/m² are 2.530, and 2.831 for amorphous silicon and copper indium gallium di-selenide respectively because we have the highest solar module operating temperature (57 oC, and 55 oC respectively) and ambient temperature (45 oC) for April, 2021 than other months. Consequently, the same behavior for the two modules at solar irradiance 1000 W/m2 with the highest power value; 2.680 W, and 3.198 W of amorphous silicon and copper indium gallium di-selenide respectively. The highest efficiency can be notes for CIGS solar module with a value 7.3%, while the lowest one is 5.5% for amorphous solar module.

2013 ◽  
Vol 1538 ◽  
pp. 45-50 ◽  
Author(s):  
Sreejith Karthikeyan ◽  
Kushagra Nagaich ◽  
Arthur E Hill ◽  
Richard D Pilkington ◽  
Stephen A Campbell

ABSTRACTPulsed d.c Magnetron Sputtering (PdcMS) has been investigated for the first time to study the deposition of copper indium gallium diselenide (CIGS) thin films for photovoltaic applications. Pulsing the d.c. in the mid frequency region enhances the ion intensity and enables long term arc-free operation for the deposition of high resistivity materials such as CIGS. It has the potential to produce films with good crystallinity, even at low substrate temperatures. However, the technique has not generally been applied to the absorber layers for photovoltaic applications. The growth of stoichiometric p-type CIGS with the desired electro-optical properties has always been a challenge, particularly over large areas, and has involved multiple steps often including a dangerous selenization process to compensate for selenium vacancies. The films deposited by PdcMS had a nearly ideal composition (Cu0.75In0.88Ga0.12Se2) as deposited at substrate temperatures ranging from no intentional heating to 400 °C. The films were found to be very dense and pin-hole free. The stoichiometry was independent of heating during the deposition, but the grain size increased with substrate temperature, reaching about ∼ 150 nm at 400 °C. Hot probe analysis showed that the layers were p-type. The physical, structural and optical properties of these films were analyzed using SEM, EDX, XRD, and UV-VIS-NIR spectroscopy. The material characteristics suggest that these films can be used for solar cell applications. This novel ion enhanced single step low temperature deposition technique may have a critical role in flexible and tandem solar cell applications compared to other conventional techniques which require higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document