scholarly journals Sensitivity of boundary layer characteristics and related low-level jet behavior to planetary boundary layer schemes in the WRF for several MCS cases

2020 ◽  
Author(s):  
Michael Garberoglio
2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


2007 ◽  
Vol 25 (10) ◽  
pp. 2125-2137 ◽  
Author(s):  
M. C. R. Kalapureddy ◽  
D. N. Rao ◽  
A. R. Jain ◽  
Y. Ohno

Abstract. Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ) over a tropical station, Gadanki (13.5° N, 79.2° E), with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima) height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.


2008 ◽  
Vol 47 (6) ◽  
pp. 1770-1784 ◽  
Author(s):  
Douglas O. ReVelle ◽  
E. Douglas Nilsson

Abstract The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of low-level jets over continental surfaces. This failure to properly predict the boundary layer wind maxima was very puzzling because more detailed numerical boundary layer models have properly predicted these low-level oceanic wind maxima. To understand the reasons for its failure to explain the ocean observations, the authors modified the frictional terms in the horizontal linear momentum equations of Thorpe and Guymer, using a standard eddy viscosity closure technique instead of the Rayleigh friction parameterization originally used. This improvement in the modeling of the dissipation terms, which has resulted in the use of an enhanced Rayleigh friction parameterization in the horizontal momentum equations, modified the boundary layer winds such that the continental predictions remained nearly identical to those predicted previously using the Thorpe and Guymer model while the oceanic predictions have now become more representative of the measured wind speed from recent Arctic expeditions.


2010 ◽  
Vol 67 (10) ◽  
pp. 3384-3408 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Some recent numerical experiments have examined the dynamics of initially surface-based squall lines that encounter an increasingly stable boundary layer, akin to what occurs with the onset of nocturnal cooling. The present study builds on that work by investigating the added effect of a developing nocturnal low-level jet (LLJ) on the convective-scale dynamics of a simulated squall line. The characteristics of the simulated LLJ atop a simulated stable boundary layer are based on past climatological studies of the LLJ in the central United States. A variety of jet orientations are tested, and sensitivities to jet height and the presence of low-level cooling are explored. The primary impacts of adding the LLJ are that it alters the wind shear in the layers just above and below the jet and that it alters the magnitude of the storm-relative inflow in the jet layer. The changes to wind shear have an attendant impact on low-level lifting, in keeping with current theories for gust front lifting in squall lines. The changes to the system-relative inflow, in turn, impact total upward mass flux and precipitation output. Both are sensitive to the squall line–relative orientation of the LLJ. The variations in updraft intensity and system-relative inflow are modulated by the progression of the low-level cooling, which mimics the development of a nocturnal boundary layer. While the system remains surface-based, the below-jet shear has the largest impact on lifting, whereas the above-jet shear begins to play a larger role as the system becomes elevated. Similarly, as the system becomes elevated, larger changes to system-relative inflow are observed because of the layer of potentially buoyant inflowing parcels becoming confined to the layer of the LLJ.


2018 ◽  
Vol 57 (10) ◽  
pp. 2375-2397 ◽  
Author(s):  
Elizabeth N. Smith ◽  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
Petra M. Klein

AbstractPrevious studies have shown that the Weather Research and Forecasting (WRF) Model often underpredicts the strength of the Great Plains nocturnal low-level jet (NLLJ), which has implications for weather, climate, aviation, air quality, and wind energy in the region. During the Lower Atmospheric Boundary Layer Experiment (LABLE) conducted in 2012, NLLJs were frequently observed at high temporal resolution, allowing for detailed documentation of their development and evolution throughout the night. Ten LABLE cases with observed NLLJs were chosen to systematically evaluate the WRF Model’s ability to reproduce the observed NLLJs. Model runs were performed with 4-, 2-, and 1-km horizontal spacing and with the default stretched vertical grid and a nonstretched 40-m vertically spaced grid to investigate which grid configurations are optimal for NLLJ modeling. These tests were conducted using three common boundary layer parameterization schemes: Mellor–Yamada Nakanishi Niino, Yonsei University, and Quasi-Normal Scale Elimination. It was found that refining horizontal spacing does not necessarily improve the modeled NLLJ wind. Increasing the number of vertical levels on a non-stretched grid provides more information about the structure of the NLLJ with some schemes, but the benefit is limited by computational expense and model stability. Simulations of the NLLJ were found to be less sensitive to boundary layer parameterization than to grid configuration. The Quasi-Normal Scale Elimination scheme was chosen for future NLLJ simulation studies.


Sign in / Sign up

Export Citation Format

Share Document