scholarly journals Cover Crop Rotation Effects on Growth and Development, Seedling Disease, and Yield of Corn and Soybean

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 677-687 ◽  
Author(s):  
Jyotsna Acharya ◽  
Thomas B. Moorman ◽  
Thomas C. Kaspar ◽  
Andrew W. Lenssen ◽  
Alison E. Robertson

The effects of winter cover crops on root disease and growth of corn and soybeans are poorly understood. A 3-year field experiment investigated the effect of winter cereal rye (Secale cereale L.) and winter camelina (Camelina sativa [L.] Crantz), used either in all three years or in rotation with each other, on corn (Zea mays L.) and soybean (Glycine max. [L.] Merr.) growth, root disease, and yield. Corn following a cover crop of camelina had reduced root disease, a lower Pythium population in seedling roots, and greater growth and yields compared with corn following a rye cover crop. Camelina and rye cover crops before soybean had either a positive or no effect on soybean growth and development, root disease, and yield. Moreover, Pythium clade B populations were greater in corn seedlings after a rye cover crop compared with those following a camelina cover crop, whereas clade F populations were greater on soybean seedlings following a camelina cover crop compared with seedlings following a rye cover crop. A winter camelina cover crop grown before corn had less-negative effects on corn seedling growth, root disease, and final yield than a winter rye cover crop before corn. Neither cover crop had negative effects on soybean, and the cover crop in the preceding spring had no measurable effects on either corn or soybean.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 865F-866
Author(s):  
Kevin Charles* ◽  
Mathieu Ngouajio ◽  
Darryl Warncke

Cover crops are commonly used to improve soil fertility and enhance crop performance. Field experiments were conducted to determine the effects of different cover crops and fertilizer rates on celery growth and development. The experiment was a two-way factorial with a split plot arrangement. The main plot factor was cover crop and included cereal rye (Secale cereale), hairy vetch (Vicia villosa), oilseed radish [Raphanus sativus (L.) var. oleiferus Metzg (Stokes)], and no cover crop. The sub-plot factor was fertilizer rate with three levels: full (160, 80, 400), half (80, 40, 200), and low (80, 0, 0) kg/ha of N, P2 O5, K2 O, respectively. The cover crops were grown during Fall 2002 and incorporated prior to celery transplanting in May 2003. During celery growing season, stalk length, above and below ground biomass were assessed at 23, 43, 64, and 84 days after planting (DAP). The biomass produced by oilseed radish (719 g/m2) exceeded that of cereal rye (284 g/m2) and hairy vetch (181 g/m2). At 23 and 43 DAP, celery fresh root (4.8 and 11.4 g/root) and shoot (6.1 and 53.6 g/shoot) biomass of oilseed radish exceeded the values of all other cover crops. At 84 DAP however, celery shoot fresh weight was similar in all cover crop treatments. Celery plants were tallest in the cereal oilseed radish and rye treatments early in the season; however final plant height at harvest was not affected by type of cover crop. The amount of fertilizer applied had a significant effect on celery growth starting at 64 DAP and continued until harvest. These results suggest that the large biomass produced by oilseed radish played an important role in early season celery growth.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jyotsna Acharya ◽  
Thomas B Moorman ◽  
Thomas C Kaspar ◽  
Andrew W. Lenssen ◽  
Stefan NA Gailans ◽  
...  

Terminating winter cereal rye (Secale cereale L.) cover crops (CCs) 10 or more days before planting corn is recommended to minimize seedling disease and potential yield loss. In Iowa, cold temperatures and frequent precipitation can prevent farmers from following that recommendation and sometimes forcing them to plant corn while the rye plants are still green, referred to as planting green (PG). A field trial was established to evaluate the effect of rye termination shortly before or after corn planting on growth, seedling root disease, and yield of corn. A rye CC was terminated 17 and 3 days before planting (DBP), and 6 and 12 days after planting (DAP) corn; corn planted following no rye was included as a control. Rye biomass, C:N ratio, and N accumulation increased when terminated 6 or 12 DAP corn compared with rye terminated 17 or 3 DBP corn. Corn seedlings were taller from the PG treatments. More radicle root rot was observed when rye was terminated 3 DBP, 6 DAP, and 12 DAP corn than for the 17 DBP treatment and the no-rye control. Generally, greater Pythium Clade B populations were detected on radicles and seminal roots of corn from the PG treatments. Corn populations, ears, or barren plants were not affected by the treatments. In both years, the no-rye control had the greatest corn yield and the 12 DAP treatment had the lowest yield. Our results suggest that PG increased corn seedling root disease and contributed to reduced corn yield.


2017 ◽  
Vol 1 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Matthew G. Bakker ◽  
Thomas B. Moorman ◽  
Thomas C. Kaspar ◽  
Daniel K. Manter

The dynamics of microbial communities associated with dying cover crops are of interest because of potential impacts on disease in a subsequent crop, and because of the importance of microbial activity on plant residue to soil organic matter dynamics and nutrient cycling. We used high throughput amplicon sequencing to characterize the composition and structure of oomycete and fungal communities associated with a rye cover crop, and to track their community dynamics in the first several weeks after herbicide was applied to terminate the cover crop. The dominant oomycetes associated with cereal rye roots were Pythium volutum, Pythium sp. F86 (an unknown species within clade B), and Lagena radicicola. Because P. volutum is sensitive to common additives in isolation media, and L. radicicola is an obligate intracellular parasite, a unique aspect of this work is to reveal the dominance of oomycete taxa that would have been missed entirely under a traditional cultivation-based approach. Based on first detection in an amplicon sequencing survey, we were able to isolate P. volutum and Pythium sp. F86. We demonstrate that both species are pathogenic on corn, and that corn seedlings grown in the field following a rye cover crop show elevated rates of infection by P. volutum, highlighting a potential disease risk associated with cover cropping. P. volutum and Pythium sp. F86 exhibited contrasting spatial patterns of abundance, with nearly complete turnover of the dominant species across the field site. In contrast to the strong spatial structuring and low diversity of oomycete communities, fungal communities associated with a cereal rye cover crop were more diverse and dynamic, with some displacement of basidiomycetes by ascomycetes over time. Several plant pathogens, as well as putative beneficial organisms, were detected among fungal communities associated with rye roots. This work sheds light on microbial community dynamics on dying host plants, highlights the power of culture-independent microbial community assessment to yield new insights, and suggests the need for informed management to reduce seedling disease risk in corn following rye cover crops.


Author(s):  
Amir Sadeghpour ◽  
Oladapo Adeyemi ◽  
Dane Hunter ◽  
Yuan Luo ◽  
Shalamar Armstrong

Abstract Growing winter cereal rye (Secale cereale) (WCR) has been identified as an effective in-field practice to reduce nitrate-N and phosphorus (P) losses to Upper Mississippi River Basin, USA. In the Midwestern USA, growers are reluctant to plant WCR especially prior to corn (Zea mays L.) due to N immobilization and establishment issues. Precision planting of WCR or ‘skipping the corn row’ (STCR) can minimize some issues associated with WCR ahead of corn while reducing cover crop seed costs. The objective of this study was to compare the effectiveness of ‘STCR’ vs normal planting of WCR at full seeding rate (NP) on WCR biomass, nutrient uptake and composition in three site-yrs (ARC2019, ARC2020, BRC2020). Our results indicated no differences in cover crop dry matter biomass production between the STCR (2.40 Mg ha−1) and NP (2.41 Mg ha−1) supported by similar normalized difference vegetative index and plant height for both treatments. Phosphorus, potassium (K), calcium (Ca) and magnesium (Mg) accumulation in aboveground biomass was only influenced by site-yr and both STCR and NP removed similar amount of P, K, Ca and Mg indicating STCR could be as effective as NP in accumulating nutrients. Aboveground carbon (C) content (1086.26 kg h−1 average over the two treatments) was similar between the two treatments and only influenced by site-yr differences. Lignin, lignin:N and C:N ratios were higher in STCR than NP in one out of three site-yrs (ARC2019) indicating greater chance of N immobilization when WCR was planted later than usual. Implementing STCR saved $8.4 ha−1 for growers and could incentivize growers to adopt this practice. Future research should evaluate corn response to STCR compared with NP and assess if soil quality declines by STCR practice over time.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.


2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


2018 ◽  
Vol 32 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractCover crop acreage has substantially increased over the last few years due to the intent of growers to capitalize on federal conservation payments and incorporate sustainable practices into agricultural systems. Despite all the known benefits, widespread adoption of cover crops still remains limited due to potential cost and management requirements. Cover crop termination is crucial, because a poorly controlled cover crop can become a weed and lessen the yield potential of the current cash crop. A field study was conducted in fall 2015 and 2016 at the Arkansas Agricultural Research and Extension Center in Fayetteville to evaluate preplant herbicide options for terminating cover crops. Glyphosate-containing treatments controlled 97% to 100% of cereal rye and wheat, but glyphosate alone controlled less than 57% of legume cover crops. The most effective way to control hairy vetch, Austrian winterpea, and crimson clover with glyphosate resulted from mixtures of glyphosate with glufosinate, 2,4-D, and dicamba. Higher rates of auxin herbicides improved control in these mixtures. Glufosinate alone or in mixture controlled legume cover crops 81% or more. Paraquat plus metribuzin was effective in terminating both cereal and legume cover crops, with control of cereal cover crops ranging from 87% to 97% and control of legumes ranging from 90% to 96%. None of these herbicides or mixtures adequately controlled rapeseed.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


2019 ◽  
Vol 34 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Derek M. Whalen ◽  
Lovreet S. Shergill ◽  
Lyle P. Kinne ◽  
Mandy D. Bish ◽  
Kevin W. Bradley

AbstractCover crops have increased in popularity in midwestern U.S. corn and soybean systems in recent years. However, little research has been conducted to evaluate how cover crops and residual herbicides are effectively integrated together for weed control in a soybean production system. Field studies were conducted in 2016 and 2017 to evaluate summer annual weed control and to determine the effect of cover crop biomass on residual herbicide reaching the soil. The herbicide treatments consisted of preplant (PP) applications of glyphosate plus 2,4-D with or without sulfentrazone plus chlorimuron at two different timings, 21 and 7 d prior to soybean planting (DPP). Cover crops evaluated included winter vetch, cereal rye, Italian ryegrass, oat, Austrian winter pea, winter wheat, and a winter vetch plus cereal rye mixture. Herbicide treatments were applied to tilled and nontilled soil without cover crop for comparison. The tillage treatment resulted in low weed biomass at all collection intervals after both application timings, which corresponded to tilled soil having the highest sulfentrazone concentration (171 ng g−1) compared with all cover crop treatments. When applied PP, herbicide treatments applied 21 DPP with sulfentrazone had greater weed (93%) and waterhemp (89%) control than when applied 7 DPP (60% and 69%, respectively). When applied POST, herbicide treatments with a residual herbicide resulted in greater weed and waterhemp control at 7 DPP (83% and 77%, respectively) than at 21 DPP (74% and 61%, respectively). Herbicide programs that included a residual herbicide had the highest soybean yields (≥3,403 kg ha−1). Results from this study indicate that residual herbicides can be effectively integrated either PP or POST in conjunction with cover crop termination applications, but termination timing and biomass accumulation will affect the amount of sulfentrazone reaching the soil.


Sign in / Sign up

Export Citation Format

Share Document