scholarly journals Incorporating Redundant Systems to Capture the Kentucky Money Shot

Author(s):  
Virginia Smith ◽  
Patrick Heelan ◽  
Emily Essex ◽  
Suzanne Weaver Smith

The Kentucky Eclipse Ballooning Project began in early 2015 when students and faculty from The University of Kentucky attended the NASA Marshall Space Flight Center BalloonSat Workshop in Huntsville, Alabama. The students accelerated their preparations after the Eclipse Ballooning Project Workshop hosted in Bozeman, Montana where they built and learned systems designed by Montana Space Grant. In 2016, the students began a sequence of 10 balloon launches in preparation for the total solar eclipse on August 21, 2017. In the early stages of this project, University of Kentucky students set the goal to capture footage of a separate high-altitude weather balloon in front of the solar eclipse, an image dubbed “The Kentucky Money Shot.” After establishing that goal, students began working on approaches and designs to capture this picture with one overarching theme: redundancy. Every aspect of the project from the number of balloons and imaging systems to tracking systems and launch procedures were designed with redundant aspects and through collaboration among the payload, ground station, launch, and mission control teams. The short time window of eclipse totality, 2 minutes 28 seconds, motivated design iterations throughout the progressive practice launches and ground tests including launching two balloons simultaneously, streaming and storing footage of the flight from multiple cameras, and using SPOT Trackers and Iridium systems as multiple tracking approaches. All of these practices and tests led to flying the final redundant designs on August 21st, 2017 to successfully capture “The Kentucky Money Shot”.

2011 ◽  
Vol 19 ◽  
pp. S113
Author(s):  
M.E. van Meegeren ◽  
N.W. Jansen ◽  
G. Roosendaal ◽  
S.C. Mastbergen ◽  
F.P. Lafeber

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S293-S293
Author(s):  
Jonathan Altamirano ◽  
Grace Tam ◽  
Marcela Lopez ◽  
India Robinson ◽  
Leanne Chun ◽  
...  

Abstract Background While pediatric cases of COVID-19 are at low risk for adverse events, schoolchildren should be considered for surveillance as they can become infected at school and serve as sources of household or community transmission. Our team assessed the feasibility of young children self-collecting SARS-CoV-2 samples for surveillance testing in an educational setting. Methods Students at a K-8 school were tested weekly for SARS-CoV-2 from September 2020 - June 2021. Error rates were collected from September 2020 - January 2021. Clinical staff provided all students with instructions for anterior nares specimen self-collection and then observed them to ensure proper technique. Instructions included holding the sterile swab while making sure not to touch the tip, inserting the swab into their nostril until they start to feel resistance, and rubbing the swab in four circles before repeating the process in their other nostril. An independent observer timed random sample self-collections from April - June 2021. Results 2,590 samples were collected from 209 students during the study period when data on error rates were collected. Errors occurred in 3.3% of all student encounters (n=87). Error rates over time are shown in Figure 1, with the highest rate occurring on the first day of testing (n=20/197, 10.2%) and the lowest in January 2021 (n=1/202, 0.5%). 2,574 visits for sample self-collection occurred during the study period when independent timing data was collected (April - June 2021). Of those visits, 7.5% (n=193) were timed. The average duration of each visit was 70 seconds. Figure 1. Swab Error Rates Over Time Conclusion Pediatric self-collected lower nasal swabs are a viable and easily tolerated specimen collection method for SARS-CoV-2 surveillance in school settings, as evidenced by the low error rate and short time window of sample self-collection during testing. School administrators should expect errors to drop quickly after implementing testing. Disclosures All Authors: No reported disclosures


Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4785-4796 ◽  
Author(s):  
Jean-Baptiste Charrier ◽  
Françoise Lapointe ◽  
Nicole M. Le Douarin ◽  
Marie-Aimée Teillet

Molecular analysis carried out on quail-chick chimeras, in which quail Hensen’s node was substituted for its chick counterpart at the five- to six-somite stage (ss), showed that the floor plate of the avian neural tube is composed of distinct areas: (1) a median one (medial floor plate or MFP) derived from Hensen’s node and characterised by the same gene expression pattern as the node cells (i.e. expression of HNF3β and Shh to the exclusion of genes early expressed in the neural ectoderm such as CSox1); and (2) lateral regions that are differentiated from the neuralised ectoderm (CSox1 positive) and form the lateral floor plate (LFP). LFP cells are induced by the MFP to express HNF3β transiently, Shh continuously and other floor-plate characteristic genes such as Netrin. In contrast to MFP cells, LFP cells also express neural markers such as Nkx2.2 and Sim1. This pattern of avian floor-plate development presents some similarities to floor-plate formation in zebrafish embryos. We also demonstrate that, although MFP and LFP have different embryonic origins in normal development, one can experimentally obtain a complete floor plate in the neural epithelium by the inductive action of either a notochord or a MFP. The competence of the neuroepithelium to respond to notochord or MFP signals is restricted to a short time window, as only the posterior-most region of the neural plate of embryos younger than 15 ss is able to differentiate a complete floor plate comprising MFP and LFP. Moreover, MFP differentiation requires between 4 and 5 days of exposure to the inducing tissues. Under the same conditions LFP and SHH-producing cells only induce LFP-type cells. These results show that the capacity to induce a complete floor plate is restricted to node-derived tissues and probably involves a still unknown factor that is not SHH, the latter being able to induce only LFP characteristics in neuralised epithelium.


1899 ◽  
Vol 64 (402-411) ◽  
pp. 21-26 ◽  

In the month of August, 1897, I was invited by the Joint Permanenta Eclipse Committee to take part in observing the total solar eclipse which occurred in India on 22nd January of the present year. The preparation of the equipment, which will be described further on, was at once proceeded with, and by the sanction of the Univer­sity authorities and the Secretary for Scotland I was granted the necessary leave of absence from the University and the Royal Observatory.


2020 ◽  
Vol 12 (22) ◽  
pp. 3720 ◽  
Author(s):  
Francesca Giannetti ◽  
Raffaello Pegna ◽  
Saverio Francini ◽  
Ronald E. McRoberts ◽  
Davide Travaglini ◽  
...  

A Landsat time series has been recognized as a viable source of information for monitoring and assessing forest disturbances and for continuous reporting on forest dynamics. This study focused on developing automated procedures for detecting disturbances in Mediterranean coppice forests which are characterized by rapid regrowth after a cut. Specifically, new methods specific to Mediterranean coppice forests are needed for mapping clearcut disturbances over time and for estimating related indicators in the context of Sustainable Forest Management and Biodiversity International monitoring frameworks. The aim of this work was to develop a new change detection algorithm for mapping clearcut disturbances in Mediterranean coppice forests with Landsat time series (LTS) using a short time window. Accuracy for the new algorithm, characterized as the Two Thresholds Method (TTM), was evaluated using an independent clearcut reference dataset over a temporal period of the 13 years between 2001 and 2013. TTM was also evaluated against two benchmark approaches: (i) LandTrendr, and (ii) the forest loss category of the Global Forest Change Map. Overall Accuracy for LandTrendr and TTM were greater than 0.94. Meanwhile, smaller accuracies were always obtained for the GFC. In particular, Producer’s Accuracy ranged between 0.45 and 0.84 for TTM and between 0.49 and 0.83 for LT, while for the GFC, PA ranged between 0 and 0.38. User’s Accuracy ranged between 0.86 and 0.96 for TTM and between 0.73 and 0.91 for LT, while for the GFC UA ranged between 0.19 and 1.00. Moreover, to illustrate the utility of TTM for mapping clearcut disturbances in Mediterranean coppice forests, we applied TTM to a Landsat scene that covered almost the entirety of the Tuscany region in Italy.


2008 ◽  
Vol 20 (5) ◽  
pp. 1325-1343 ◽  
Author(s):  
Zbyněk Pawlas ◽  
Lev B. Klebanov ◽  
Martin Prokop ◽  
Petr Lansky

We study the estimation of statistical moments of interspike intervals based on observation of spike counts in many independent short time windows. This scenario corresponds to the situation in which a target neuron occurs. It receives information from many neurons and has to respond within a short time interval. The precision of the estimation procedures is examined. As the model for neuronal activity, two examples of stationary point processes are considered: renewal process and doubly stochastic Poisson process. Both moment and maximum likelihood estimators are investigated. Not only the mean but also the coefficient of variation is estimated. In accordance with our expectations, numerical studies confirm that the estimation of mean interspike interval is more reliable than the estimation of coefficient of variation. The error of estimation increases with increasing mean interspike interval, which is equivalent to decreasing the size of window (less events are observed in a window) and with decreasing the number of neurons (lower number of windows).


2011 ◽  
Vol 390 (20) ◽  
pp. 3444-3453 ◽  
Author(s):  
Paulo S.G. de Mattos Neto ◽  
David A. Silva ◽  
Tiago A.E. Ferreira ◽  
George D.C. Cavalcanti

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103269 ◽  
Author(s):  
Sarah E. Marsh ◽  
Michael Poulsen ◽  
Adrián Pinto-Tomás ◽  
Cameron R. Currie

Sign in / Sign up

Export Citation Format

Share Document