scholarly journals Structure and stability of non-symmetric Burgers vortices

1998 ◽  
Vol 363 ◽  
pp. 199-228 ◽  
Author(s):  
AURELIUS PROCHAZKA ◽  
D. I. PULLIN

We investigate, numerically and analytically, the structure and stability of steady and quasi-steady solutions of the Navier–Stokes equations corresponding to stretched vortices embedded in a uniform non-symmetric straining field, (αx, βy, γz), α+β+γ=0, one principal axis of extensional strain of which is aligned with the vorticity. These are known as non-symmetric Burgers vortices (Robinson & Saffman 1984). We consider vortex Reynolds numbers R=Γ/(2πv) where Γ is the vortex circulation and v the kinematic viscosity, in the range R=1−104, and a broad range of strain ratios λ=(β−α)/(β+α) including λ>1, and in some cases λ[Gt ]1. A pseudo-spectral method is used to obtain numerical solutions corresponding to steady and quasi-steady vortex states over our whole (R, λ) parameter space including λ where arguments proposed by Moffatt, Kida & Ohkitani (1994) demonstrate the non-existence of strictly steady solutions. When λ[Gt ]1, R[Gt ]1 and ε≡λ/R[Lt ]1, we find an accurate asymptotic form for the vorticity in a region 1<r/(2v/γ)1/2[les ]ε1/2, giving very good agreement with our numerical solutions. This suggests the existence of an extended region where the exponentially small vorticity is confined to a nearly cat's-eye-shaped region of the almost two-dimensional flow, and takes a constant value nearly equal to Γγ/(4πv)exp[−1/(2eε)] on bounding streamlines. This allows an estimate of the leakage rate of circulation to infinity as ∂Γ/∂t =(0.48475/4π)γε−1Γ exp (−1/2eε) with corresponding exponentially slow decay of the vortex when λ>1. An iterative technique based on the power method is used to estimate the largest eigenvalues for the non-symmetric case λ>0. Stability is found for 0[les ]λ[les ]1, and a neutrally convective mode of instability is found and analysed for λ>1. Our general conclusion is that the generalized non-symmetric Burgers vortex is unconditionally stable to two-dimensional disturbances for all R, 0[les ]λ[les ]1, and that when λ>1, the vortex will decay only through exponentially slow leakage of vorticity, indicating extreme robustness in this case.

1972 ◽  
Vol 39 (4) ◽  
pp. 873-878 ◽  
Author(s):  
J. W. McDonald ◽  
V. E. Denny ◽  
A. F. Mills

Numerical solutions of the Navier-Stokes equations are obtained for steady two-dimensional flow in the inlet region of both a tube and a channel. The entering flow is considered to be either uniform (u = constant, v = 0) or irrotational (u = constant, ω = 0). Values of Reynolds number Re = u0a/ν range from 0.75 to 2 × 106. An improved method for solving the stream function-vorticity equations of hydrodynamics has been developed. The method is stable at all Reynolds numbers and appears to be computationally superior to previous methods.


2017 ◽  
Vol 64 (3-4) ◽  
pp. 141-154
Author(s):  
Dzmitry Prybytak ◽  
Piotr Zima

AbstractThe paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the open-source code library OpenFOAM was applied. The results of numerical solutions were compared with the results of measurements carried out on a test stand in a hydraulic laboratory. The measurements were taken with an ADV probe (Acoustic Doppler Velocimeter). Finally, differences between the results obtained from the mathematical models and the results of laboratory measurements were analysed.


1994 ◽  
Vol 61 (3) ◽  
pp. 629-633 ◽  
Author(s):  
S. H. Smith

When a stretching surface is moved quickly, for a short period of time, a pulse is transmitted to the surrounding fluid. Here we describe an exact solution in terms of a similarity variable for the Navier-Stokes equations which represents the effect of this pulse for two-dimensional flow. The unusual feature is that this solution is only valid for a limited range of the Reynolds number; outside this domain unbounded velocities result.


1991 ◽  
Vol 227 ◽  
pp. 1-33 ◽  
Author(s):  
Stephen M. Cox

We consider the flow of a viscous incompressible fluid in a parallel-walled channel, driven by steady uniform suction through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a single partial differential equation (PDE) for the stream function, with two-point boundary conditions. We discuss the bifurcations of the steady solutions first, and show how a pitchfork bifurcation is unfolded when a symmetry of the problem is broken.Then we describe time-dependent solutions of the governing PDE, which we calculate numerically. We analyse these unsteady solutions when there is a high rate of suction through one wall, and the other wall is impermeable: there is a limit cycle composed of an explosive phase of inviscid growth, and a slow viscous decay. The inviscid phase ‘almost’ has a finite-time singularity. We discuss whether solutions of the governing PDE, which are exact solutions of the Navier-Stokes equations, may develop mathematical singularities in a finite time.When the rates of suction at the two walls are equal so that the problem is symmetrical, there is an abrupt transition to chaos, a ‘homoclinic explosion’, in the time-dependent solutions as the Reynolds number is increased. We unfold this transition by perturbing the symmetry, and compare direct numerical integrations of the governing PDE with a recent theory for ‘Lorenz-like’ dynamical systems. The chaos is found to be very sensitive to symmetry breaking.


1990 ◽  
Vol 220 ◽  
pp. 397-411 ◽  
Author(s):  
Laura L. Pauley ◽  
Parviz Moin ◽  
William C. Reynolds

The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


Sign in / Sign up

Export Citation Format

Share Document