scholarly journals Adsorptive removal of methyl orange and methylene blue from aqueous solutions with Acacia crassicarpa activated carbon

2021 ◽  
Vol 63 (4) ◽  
pp. 23-27
Author(s):  
Tue Ngoc Nguyen ◽  
◽  
Khanh Quoc Dang ◽  
Duc Trung Nguyen ◽  
◽  
...  

In this study, activated carbon prepared from Acacia crassicarpa barkwas prepared and studied for the potential development of low-cost, carbon-based adsorbents that remove industrial dyes from aqueous solutions. Various spectroscopy techniques and surface analyses were used to characterize the adsorbents. The adsorption of methyl orange (MO) and methylene blue (MB) onto the material was investigated under optimal experimental conditions including temperature, adsorbent dosage, and initial concentration of chemicals. The Langmuir isotherm model was observed to fit the adsorption data well. The maximum adsorption capacities predicted by the Langmuir isotherm were found to be 10.36 mg.g-1 for MO and 15.34 mg.g-1 for MB. The adsorbents were better able to remove the cationic dye than the anionic dye. The results of this study will be useful for future scale-up production of low-cost adsorbents using Acacia crassicarpa for the removal of cationic and anionic dyes.

2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


2018 ◽  
Vol 19 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Taous Hamad ◽  
◽  
Zoubir Benmaamar ◽  
Mohamad Nedjioui ◽  
Ahmed Boucherit ◽  
...  

Activated carbon was produced from Sapindusfruitresidue and wasused for the adsorption of methylene blue dye from simulated aqueous solution. Adsorption kinetics of methylene blue onto actived carbonwerestudied in a batch system. The effects of pH and contact time were examined. The goal of the present study was the determination of the optimal experimental conditions. The maximum adsorption of methylene blue occurredat pH 6.0(4.83 mg/g) and the lowest adsorption occurred at pH 2.0(4.35 mg/g).120 min was the time needed for apparent equilibrium.Adsorption modelling was determined by using theFreundlich and Langmuir isotherms.Data were interpreted based on R2and various error distribution functions. Adsorption isotherm was best described bynon linear Freundlichisotherm model. In order to determine the best-fit-adsorption kinetics, the experimental data were analyzed using pseudo-first-order, pseudo-second-order, pseudo-third-order, Esquivel, and Elovichmodels. The needed relative parameters were determined bylinear and non-linear regressive methods. The statistical functions were estimated to find the suitable method which fit the experimental data. Both methods were suitable to obtain the required parameters. The model that best fit the present equilibrium data was the linear Elovichmodel (type 1 and 2). The present work showed that activated carbon can be used as a low cost adsorbent for the methylene blue removal from aqueous solutions.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4661
Author(s):  
Jayachamarajapura Pranesh Shubha ◽  
Haralahalli Shivappa Savitha ◽  
Syed Farooq Adil ◽  
Mujeeb Khan ◽  
Mohammad Rafe Hatshan ◽  
...  

Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.


2013 ◽  
Vol 67 (11) ◽  
pp. 2560-2567 ◽  
Author(s):  
Fan Yang ◽  
Xiaojie Song ◽  
Lifeng Yan

Cationic paper was prepared by reaction of paper with 2,3-epoxypropyltrimethylammonium chloride in aqueous suspension, and tested as low-cost adsorbent for wastewater treatment. The experimental results revealed that anionic dyes (Acid Orange 7, Acid Red 18, and Acid Blue 92) were adsorbed on the cationic paper nicely. The maximum amount of dye Acid Orange 7 adsorbed on cationic paper was 337.2 mg/g in experimental conditions. The effects of initial dye concentration, temperature, and initial pH of dye solution on adsorption capacity of cationic paper were studied. The pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data. The Freundlich and Langmuir adsorption models were used to describe adsorption equilibrium. The thermodynamic data indicated that the adsorption process of dye on cationic paper occurred spontaneously.


1995 ◽  
Vol 22 (1) ◽  
pp. 106-120
Author(s):  
Roberto M. Narbaitz ◽  
Frances Z. Parsons ◽  
Tsong-Yih Tzeng

Point-of-entry systems with granular activated carbon filters have been used extensively to provide safe water to rural homes with wells contaminated with synthetic organic chemicals. Because of the low cost of these systems, their design is generally based on the equilibrium column model, the isotherm data from the literature, and a scale-up factor. This paper analyzes the necessary scale-up factors for point-of-entry adsorbers based on fumigant adsorption data gathered through an extensive literature review. The fumigants evaluated are 1,2-dichloropropane, 1,2-dibromo-3-chloropropane, and ethylene dibromide. It was impossible to thoroughly assess the scale-up factors for 1,2-dichloropropane because of the limited data. Column data for the other two fumigants were sufficient to generate column loading lines, which can be used directly without resorting to scale-up factors. Column data showed that the scale-up factors are greatly affected by competitive adsorption with the naturally occurring background organic matter and by preloading of these organic matter. As these phenomena are not well understood, it is presently impossible to accurately predict the appropriate scale-up factors. A recommended design approach is outlined. Key words: adsorption, activated carbon, fumigants, point-of-entry.


Sign in / Sign up

Export Citation Format

Share Document