scholarly journals Simulation of a high proton temperature plasma toroidal magnetic trap to be used in proton-11B fusion

2019 ◽  
Vol 1 (1) ◽  
pp. 12-20
Author(s):  
Javier Lopez Segura ◽  
Nicolas Urgoiti Moinot ◽  
Enzo Lazzaro

Several tokamaks structures containing 500 keV protons to be used in P-B11 fusion were simulated. In order to find the optimal confinement configuration, the simulation was helped by an evolutionary algorithm running 145,000 simulations. The results are presented in this paper. According to the simulations the tokamak structure can be operated to reach ignition using the proposed plasma mode that includes the use of low electron temperature and high thermal energy protons in the plasma (500 keV).

1991 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
S. K. Sharma ◽  
A. Sudarshan

In this paper, we use the hydrodynamic approach to study the stimulated scattering of high-frequency electromagnetic waves by a low-frequency electrostatic perturbation that is either an upper- or lower-hybrid wave in a two-electron-temperature plasma. Considering the four-wave interaction between a strong high-frequency pump and the low-frequency electrostatic perturbation (LHW or UHW), we obtain the dispersion relation for the scattered wave, which is then solved to obtain an explicit expression for the growth rate of the coupled modes. For a typical Q-machine plasma, results show that in both cases the growth rate increases with noh/noc. This is in contrast with the results of Guha & Asthana (1989), who predicted that, for scattering by a UHW perturbation, the growth rate should decrease with increasing noh/noc.


2020 ◽  
Vol 493 (4) ◽  
pp. 5761-5772 ◽  
Author(s):  
Takumi Ohmura ◽  
Mami Machida ◽  
Kenji Nakamura ◽  
Yuki Kudoh ◽  
Ryoji Matsumoto

ABSTRACT We present the results of two-temperature magnetohydrodynamic simulations of the propagation of sub-relativistic jets of active galactic nuclei. The dependence of the electron and ion temperature distributions on the fraction of electron heating, fe, at the shock front is studied for fe = 0, 0.05, and 0.2. Numerical results indicate that in sub-relativistic, rarefied jets, the jet plasma crossing the terminal shock forms a hot, two-temperature plasma in which the ion temperature is higher than the electron temperature. The two-temperature plasma expands and forms a backflow referred to as a cocoon, in which the ion temperature remains higher than the electron temperature for longer than 100 Myr. Electrons in the cocoon are continuously heated by ions through Coulomb collisions, and the electron temperature thus remains at Te > 109 K in the cocoon. X-ray emissions from the cocoon are weak because the electron number density is low. Meanwhile, X-rays are emitted from the shocked intracluster medium (ICM) surrounding the cocoon. Mixing of the jet plasma and the shocked ICM through the Kelvin–Helmholtz instability at the interface enhances X-ray emissions around the contact discontinuity between the cocoon and shocked ICM.


1985 ◽  
Vol 40 (9) ◽  
pp. 885-891 ◽  
Author(s):  
C. Bonnefoi ◽  
J. Aubreton ◽  
J.-M. Mexmain

Abstract We have developed a modified Chapman-Enskog method for a two-temperature partially ionized plasma: electron temperature (Te) and heavy particles temperature (Th). We introduce a new definition of the diffusion forces and then calculate the reactive thermal conductivity λR.


Author(s):  
Shoko Watanabe ◽  
Shigeo Yamauchi ◽  
Kumiko K Nobukawa ◽  
Hiroki Akamatsu

Abstract The results of spectral analysis for the galaxy cluster IGR J17448$-$3232 are presented. The intracluster medium (ICM) in the central region ($r\lt 300^{\prime \prime }$, $320\:$kpc) has a high electron temperature plasma of $kT_{\rm e} \sim 13$–$15\:$keV, and an ionization temperature estimated from an intensity ratio of Fe xxvi Ly$\alpha /$Fe xxv He$\alpha$ lines is lower than the electron temperature, which suggests that the ICM is in the non-ionization equilibrium (NEI) state. The spectrum in the central region can be also fitted with a two-component model: a two-temperature plasma model in a collisional ionization equilibrium (CIE) with temperatures of $7.9\:$keV and $\gt 34\:$keV, or a CIE$+$power-law model with a temperature of $9.4\:$keV and a photon index of 1.1. The two-component models can represent the intensity ratio of Fe xxvi Ly$\alpha /$Fe xxv He$\alpha$ lines. On the other hand, the spectrum in the outer region ($r\gt 300^{\prime \prime }$) can be explained by a single CIE plasma model with a temperature of 5–$8\:$keV. Based on the spectral feature and its circular structure, we propose that the NEI plasma was produced by merging along the line-of-sight direction.


Sign in / Sign up

Export Citation Format

Share Document