scholarly journals Optimasi Algoritma SVM Dan k-NN Berbasis Particle Swarm Optimization Pada Analisis Sentimen Fenomena Tagar #2019GantiPresiden

2020 ◽  
Vol 6 (1) ◽  
pp. 95-102
Author(s):  
Atang Saepudin ◽  
Riska Aryanti ◽  
Eka Fitriani ◽  
Dahlia Dahlia

Analisis sentimen adalah proses untuk menentukan konten dataset berbasis teks yang positif atau negatif. Saat ini, opini publik menjadi sumber penting dalam keputusan seseorang dalam menemukan solusi. Algoritma klasifikasi seperti Support Vector Machine (SVM) dan K-Nearest Neighbor (k-NN) diusulkan oleh banyak peneliti untuk digunakan dalam analisis sentimen untuk pendapat ulasan. Namun, klasifikasi sentimen teks memiliki masalah pada banyak atribut yang digunakan dalam dataset. Fitur pemilihan dapat digunakan sebagai proses optimasi untuk mengurangi set fitur asli ke subset yang relatif kecil dari fitur yang secara signifikan meningkatkan akurasi klasifikasi untuk cepat dan efektif. Masalah dalam penelitian ini adalah pemilihan pemilihan fitur untuk meningkatkan nilai akurasi Support Vector Machine (SVM) dan K-Nearest Neighbor (k-NN) dan membandingkan akurasi tertinggi untuk analisis sentimen tweet / komentar yang menggunakan tagar # 2019GantiPresiden. Algoritma perbandingan, SVM menghasilkan akurasi 88,00% dan AUC 0,964, kemudian dibandingkan dengan SVM berdasarkan PSO dengan akurasi 92,75% dan AUC 0,973. Data hasil pengujian untuk akurasi algoritma k-NN adalah 88,50% dan AUC 0,948, kemudian dibandingkan untuk akurasi dengan PSO berbasis k-NN sebesar 75,25% dan AUC 0,768. Hasil pengujian algoritma PSO dapat meningkatkan akurasi SVM, tetapi tidak mampu meningkatkan akurasi algoritma k-NN. Algoritma SVM berbasis PSO terbukti memberikan solusi untuk masalah klasifikasi tweets/ komentar yang menggunakan tagar # 2019GantiPresiden di Twitter agar lebih akurat dan optimal.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangrong Zhang ◽  
Licheng Jiao ◽  
Anand Paul ◽  
Yongfu Yuan ◽  
Zhengli Wei ◽  
...  

A semisupervised classification method based on particle swarm optimization (PSO) is proposed. The semisupervised PSO simultaneously uses limited labeled samples and large amounts of unlabeled samples to find a collection of prototypes (or centroids) that are considered to precisely represent the patterns of the whole data, and then, in principle of the “nearest neighborhood,” the unlabeled data can be classified with the obtained prototypes. In order to validate the performance of the proposed method, we compare the classification accuracy of PSO classifier, k-nearest neighbor algorithm, and support vector machine on six UCI datasets, four typical artificial datasets, and the USPS handwritten dataset. Experimental results demonstrate that the proposed method has good performance even with very limited labeled samples due to the usage of both discriminant information provided by labeled samples and the structure information provided by unlabeled samples.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


Sign in / Sign up

Export Citation Format

Share Document