scholarly journals CONTROL STRATEGY OF NATURAL VENTILATION BASED ON THERMAL COMFORT AND ENERGY SAVING EFFECT : Measurement survey on natural ventilation Part2

2004 ◽  
Vol 69 (577) ◽  
pp. 7-12 ◽  
Author(s):  
Akinori HOSOI ◽  
Shigeaki NARITA ◽  
Nobuyuki SUNAGA
Author(s):  
Elvire Katramiz ◽  
Nesreen Ghaddar ◽  
Kamel Ghali

Abstract The mixed-mode ventilation (MMV) system is an energy-friendly ventilation technique that combines natural ventilation (NV) with mechanical air conditioning (AC). It draws in fresh air when the outdoor conditions are favorable or activates otherwise the AC system during occupancy hours. To improve performance of the MMV system, it is proposed to integrate it with an intermittent personalized ventilation (IPV) system. IPV delivers cool clean air intermittently to the occupant and enhances occupant thermal comfort. With the proper ventilation control strategy, IPV can aid MMV by increasing NV mode operational hours, and improve the energy performance of the AC system by relaxing the required macroclimate set point temperature. The aim of this work is to study the IPV+MMV system performance for an office space application in terms of thermal comfort and energy savings through the implementation of an appropriate control strategy. A validated computational fluid dynamics (CFD) model of an office space equipped with IPV is used to assess the thermal fields in the vicinity of an occupant. It is then coupled with a transient bio-heat and comfort models to find the overall thermal comfort levels. Subsequently, a building-performance simulation study is performed using Integrated Environmental Solutions-Virtual Environment (IES-VE) for an office in Beirut, Lebanon for the typical summer month of July. An energy analysis is conducted to predict the savings of the suggested design in comparison to the conventional AC system. Results showed that the use of IPV units and MMV significantly reduced the number of AC operation hours while providing thermal comfort.


2016 ◽  
Vol 824 ◽  
pp. 625-632
Author(s):  
Mária Budiaková

The paper is oriented on the analysis of the ventilation systems in schoolrooms. Correct and sufficient ventilation of schoolrooms is very important because students and pupils spend in the schoolrooms the majority of their time in school. In our schools the ventilation is incorrect and insufficient. The biggest problem is winter period when the ventilation is provided only by opening the doors to corridor. This way, there is insufficient intake of oxygen, which causes distractibility and feeling of tiredness of pupils. In current schoolrooms we can use only natural ventilation and thus the schoolrooms have to be ventilated using windows. Therefore this research was focused on the comparison and the analysis of different systems of natural ventilation in schoolrooms. The experimental measurements were carried out in schoolroom, where the parameters of thermal comfort were measured in the different systems of natural ventilation with device Testo 480 which was connected to computer. Gained values of air temperature, air velocity and index PMV are presented in graphs. On the base of analysis of measured values were evaluated the systems of natural ventilation for schoolrooms. In the future, the mechanical ventilation in schoolrooms can be assumed, therefore the recommendation on modern energy saving system of mechanical ventilation is in the end of this paper.


2020 ◽  
pp. 130-140
Author(s):  
Guozeng Wu , Tao Li , Yijin Gang

On the basis of ensuring the requirements of process air parameters, the air conditioning control should reduce the energy consumption of the air conditioning system to the maximum extent. In this paper, by improving the adjusting speed and stability of the air conditioning system, and according to the process of environmental indicators allow deviation of belt, on the premise of not beyond the maximum technical index requirements by control algorithm to achieve better energy saving effect.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012161
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg

Abstract The paper studies the energy renovation of a residential building with new façade solutions combining smart ventilated window (VW) and PCM energy storage and the corresponding control strategy to ensure energy savings. The study is carried out by Energyplus modelling comparing the energy consumption and thermal comfort of an apartment before and after renovation. A detailed control strategy is introduced and simulated. The modelling results of the apartment before and after retrofit indicate that with the designed control strategies, the average energy saving percentage of the apartment with PCM energy storage and VW compared to the apartment without PCM energy storage and VW is 29%. The rooms with PCMVWs achieve higher energy saving than the rooms with only VWs. The PCM energy storage improves energy performance of the VWs for both heating and cooling seasons. With the renovation, the thermal comfort of all the rooms are improved for cooling season.


2020 ◽  
pp. 014459872095628 ◽  
Author(s):  
Keming Hou ◽  
Shanshan Li ◽  
Haining Wang

In recent years, energy efficiency and energy saving strategies have become priorities for energy policy in most countries, and green energy saving buildings has attracted more attention in the worldwide. The use of passive energy saving natural ventilation strategy can improve the effect of building energy saving and improve the internal microenvironment of the building. This paper introduces and analyzes the passive preheating natural ventilation double skin facade (DSF) comprehensively. The influence of the structural parameters of the double skin facade in cold season ventilation on the preheating ventilation effect is discussed on the basis of the discussion and experiment of an actual double skin facade office building. Further, the energy-saving effect of the passive preheating natural ventilation double skin facade is simulated and verified. The effect of structural parameters of DSF in cold season on the thermal performance is summarized. These corresponding results could provide some reference for the buildings in the similar climate regions.


2013 ◽  
Vol 78 (686) ◽  
pp. 351-357
Author(s):  
Ryuichi YASUNAGA ◽  
Tomoya SAKAMOTO ◽  
Yasuyuki SHIRAISHI ◽  
Yoshie UCHIKAWA ◽  
Yasushi NAKAMURA

Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 248
Author(s):  
Ruey-Lung Hwang ◽  
Bi-Lian Chen ◽  
Wei-An Chen

Strategies to reduce energy consumption are presently experiencing vigorous development. Phase change materials (PCMs) are novel materials that can reduce indoor temperatures via the change in material phase. Regarding the situation in Taiwan, there is no practical utilization of PCMs in school buildings at present, especially in combination with rooftops. In this paper, we discuss the feasibility and utilization potential of installing PCMs in the rooftops of school buildings. School buildings located in northern and southern Taiwan (Taipei and Kaohsiung) were selected to analyze the energy-saving potential and optimization of indoor thermal comfort by installing PCMs with different properties in rooftops over two time periods, including the air conditioning (AC) and natural ventilation (NV) seasons. Based on the simulation results, the feasible patterns of PCM simultaneity are found to be appropriate for improved indoor comfort and energy saving during the different seasons. Specifically, the efficient phase change temperature (PCT) for different PCM thicknesses is clarified to be 29 °C. The economic thickness of PCM was clarified to be 20 mm for Taipei and Kaohsiung. Through the recommendations proposed in this study, it is expected that the PCMs may be efficiently implemented in school buildings to realize the goal of energy conservation and improve thermal comfort.


2014 ◽  
Vol 513-517 ◽  
pp. 3568-3571
Author(s):  
Bing Xu ◽  
Cheng Qian Xu ◽  
Zhong Jin Shi ◽  
Bao Guo Zheng ◽  
Xue Han Zhu

In order to reduce the energy consumption of air conditioning systems, the best running model is adjusting the humiture according to actual needs of environment and groups.This paper take out a control strategy based on the Multi-objective Optimization Evolutionary Algorithms.With cntrol simulation, it achieve the energy saving effect in air conditioning units groups, proposed multi-objective optimization control strategy.


2011 ◽  
Vol 121-126 ◽  
pp. 597-601
Author(s):  
Cui Cui Qin ◽  
Li Hua Zhao

Natural ventilation is the most effective measure to reduce the cooling energy consumption, but it is quite difficult to control and quantitatively assess the natural ventilation. A method was developed with coupling simulation by both software of DeST-h and computational fluid dynamics (CFD) in typical meteorological year (TMY) in Guangzhou. First, the base room temperatures with different air change (ACH) rates of natural ventilated dwelling were simulated with DeST-h. The time period in that the indoor air temperature could meet thermal comfort requirement only by natural ventilation in occupied period was analyzed, in which the wind speed and direction in TMY was obtained for the ventilation environment simulation of rooms in windows and doors switching with the PHOENICS software. The actual air change rates in different rooms in such wind speed and direction were calculated. Also the cooling loads of building in the actual air change rates were simulated with intermittent air conditioning. The air conditioning system operated when the base room temperature was higher than 29°C. Rate of cooling loads reduction was calculated by comparing the result to the baseline, which were the cooling loads of building with 1 ACH. The actual air change rates show that the energy saving effect of natural ventilation was influenced by the windows and doors switching. 61~71.37% of the natural ventilation potential was used in the rooms with windows and doors opened, and 14.06~82.54% of the natural ventilation potential was used in the rooms with windows opened and doors closed. The rate of cooling loads reduction in rooms and building were 0.34~10.50% and 6.14% respectively.


Sign in / Sign up

Export Citation Format

Share Document