scholarly journals EFFECTS OF VERTICAL-GROUND-MOTION-INDUCED AXIAL FORCE ON INELASTIC LATERAL RESPONSE OF STEEL BEAM-COLUMNS

Author(s):  
Shinji YAMAZAKI ◽  
Susumu MINAMI ◽  
Hiroaki MIMURA ◽  
Kuniaki UDAGAWA ◽  
Masaru YOSHIKAWA ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Siyun Kim ◽  
Sung Jig Kim ◽  
Chunho Chang

The paper presents an analytical investigation of the effect of vertical ground motion on the selected 13 reinforced concrete (RC) frames with different geometric configurations. For this purpose, earthquake ground motions with various vertical-to-horizontal peak acceleration ratios are selected to which a suitable scale factor is applied to match with seismic hazards of Korea. The methodology involves the evaluation of the structural responses of RC frames subjected to the selected records by means of nonlinear time history analyses. The results from the analysis are compared with results from studies of the case of horizontal-only excitation. The effect of the vertical earthquake component on damage of RC frames is considered at both the global and the local levels. The effect of vertical ground motion on axial force, shear demand, and shear capacity of RC columns is investigated to assess failure on a local level. In particular, the shear capacity is evaluated by using both the conservative method of a design code and more realistic predictive approaches. The results of the extensive analyses indicate that vertical ground motion can significantly affect the response of RC members in terms of axial force variation and shear capacity. These results point to the conclusion that vertical ground motion needs to be included in analysis for assessment and design.


2020 ◽  
Vol 47 (7) ◽  
pp. 790-800 ◽  
Author(s):  
Hadi Aryan ◽  
Mehdi Ghassemieh

Field evidence of recent earthquakes shows serious bridge damages due to the direct compression or tension in the columns and some flexural and shear failures caused by the variation in axial force of the columns. These damages could not be produced solely by the horizontal seismic excitations; the vertical component of the earthquake is involved. This paper presents a numerical study highlighting the presence of vertical seismic excitation. Nonlinear time history analyses are conducted on detailed three-dimensional models of multi-span simply supported and multi-span continuous bridges using a suite of representative ground motions. The results showed the significant influence of vertical excitation on the bridge responses. Therefore, it is imperative to include more efficient criteria to upgrade the design codes and extend practical techniques that consider and cope with the structural effects of vertical ground motion along with the horizontal excitations.


Sign in / Sign up

Export Citation Format

Share Document