scholarly journals RELATION BETWEEN SUBGRADE REACTION AND DISPLACEMENT OF MODEL PILE GROUP BASED ON HORIZONTAL LOADING TEST

Author(s):  
Yasutsugu SUZUKI ◽  
Naohito ADACHI
Author(s):  
Takashi KURATA ◽  
Hisatoshi KASHIWA ◽  
Yasuhiro HAYASHI ◽  
Shuji TAMURA ◽  
Keiichiro SUITA

2004 ◽  
pp. 41-54
Author(s):  
Eiki YAMAGUCHI ◽  
Yoshikatsu NANNO ◽  
Yoshiaki KIKUCHI ◽  
Yoshinobu KUBO

1995 ◽  
Vol 32 (2) ◽  
pp. 364-368 ◽  
Author(s):  
Robert G. Horvath

Loading tests were carried out on a model pile embedded in clay to examine the influence of rate of loading on the capacity of the pile. The pile was loaded to failure using constant rate of penetration (CRP), quick maintained loading (QML), and quick continuous loading (QCL) methods of loading. The QCL test models the Statnamic loading test, which has been recently developed in Canada. The CRP tests were used as a reference, and the results were normalized using the CRP test results. The durations of the QML and QCL tests varied from approximately 0.1 s to 17 min, which are significantly faster than normal loading rates. Applied loads and point load were measured using load cells, and top displacement was measured using a displacement transducer. The test results showed an increase in pile capacity with increased rate of loading. Damping was found to be significant for the QCL tests (duration = 0.1 s) and negligible for the QML tests (duration ≥ 10 s). Correcting the results of the QCL tests for damping, using the equilibrium point method developed for Statnamic testing, greatly improved the correlation of the QCL and QML test results. Key words : model piles, axial loading, loading rate, clay, laboratory study, test methods.


2006 ◽  
Author(s):  
Sudip Basak

The environment prevalent in ocean necessitates the pile foundations supporting offshore structures to be designed against lateral cyclic loading initiated by wave action. Such quasi-static load reversal induces deterioration in the strength and stiffness of the soil-pile system introducing progressive reduction in the bearing capacity as well as settlement of the pile foundation. To understand the effect of lateral cyclic load on pile group, a new apparatus, consisting of mechanically and electrically controlled components, has been designed and fabricated. Each of the components of this apparatus is calibrated and a series of trial tests are performed for its performance study. This paper presents detailed description of the apparatus, calibration and operating principle of each of its components, the observations made from trial experiments and the relevant conclusions drawn therefrom.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mahdy Khari ◽  
Khairul Anuar Kassim ◽  
Azlan Adnan

Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratiol/d= 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing ofs/dfrom 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio ofs/dmore than6dis large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.


1998 ◽  
Vol 17 (7-8) ◽  
pp. 519-523 ◽  
Author(s):  
Robb Eric S. Moss ◽  
Joseph A. Caliendo ◽  
Loren R. Anderson

2018 ◽  
Vol 13 (7) ◽  
pp. 1333-1344
Author(s):  
Hajime Yokouchi ◽  
Yoshimitsu Ohashi ◽  
◽  

Several traditional building group districts exist in Japan as a system for preserving the remaining historical villages and townscapes of the country, along with their surrounding environment. In the northern Kanto region of Japan, there remain examples of many dozo-style structures called “Dozo-dukuri,” forming a distinctive historical townscape. In the 2011 Tohoku Region Pacific Offshore Earthquake, the traditional townscapes and dozo-style structures of the Kanto region were seriously damaged. When restoring the walls of damaged dozo-style structures to a sound condition, demolishing and reconstructing all the mud requires considerable labor; moreover, few modern artisans can construct mud walls. However, if there was a method that could recover the structural performance of the walls immediately via partial repair, the restoration of the walls could again become economical. Therefore, in this study, we first surveyed the specifications of mud walls in the northern Kanto region. Then, we performed horizontal loading tests on full-scale walls produced according to the survey results to determine the structural performance of walls under a horizontal force, e.g., an earthquake. Further, a test specimen damaged by a horizontal force was repaired, and a horizontal loading test was performed again. The results elucidated the structural performance recoverability obtained by the proposed repair method.


Sign in / Sign up

Export Citation Format

Share Document