offshore earthquake
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sean Kuanhsiang Chen ◽  
Yih-Min Wu ◽  
Yu-Chang Chan

Abstract The recurrence intervals of slow slip events may increase gradually after a large earthquake during the afterslip. Stress perturbations during coseismic and postseismic periods may result in such an increase of intervals. However, the increasing recurrence intervals of slow slip events are rarely observed during an afterslip. The evolution process along with the afterslip remains unclear. We report an observation of slow slip events following the 2002 Mw 7.1 Hualien offshore earthquake afterslip in the southernmost Ryukyu subduction zone. Slow slip events in 2005, 2009, and 2015 are adjacent to the Mw 7.1 earthquake hypocenter. An increasing slow-slip interval of 3.1, 4.2, and 6.2 years has been observed after the earthquake. We calculated coseismic and postseismic slips from the Mw 7.1 earthquake and then estimated the Coulomb stress changes in the slow slip region. The Mw 7.1 earthquake has contributed positive Coulomb stresses to both the 2005 slow-slip region and 2009/2015 repeating slow-slip region. The coseismic and postseismic Coulomb stress change on the 2005 slow-slip region is approximately 0.05 MPa and 0.035 MPa, respectively. However, both Coulomb stress changes on the 2009/2015 repeating slow-slip region are not over 0.03 MPa. The ongoing afterslip following the Mw 7.1 earthquake last for at least five years, evolving with a decaying stress rate with time. The long-term stress perturbations may be able to trigger the 2005 slow slip event during the afterslip. The 2009 slow slip event seems to be influenced by the afterslip as well. Postseismic stress evolution and frictional and stressed conditions of the slow-slip region can be a reason to affect the evolution process of slow slip events intervals.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Shingo Yoshida ◽  
Takuto Maeda ◽  
Naoyuki Kato

Abstract We propose a normal-stress-dependent Nagata law. Nagata et al. (J Geophys Res 117:B02314, 2012) revised the rate- and state-dependent friction law by introducing the shear stress dependence. We further extended the Nagata law by incorporating the normal stress dependence obtained by Linker and Dieterich (J Geophys Res 97:4923–4940, 1992). We performed numerical simulations of earthquake triggering by assuming the extended Nagata law. In the case of repeated earthquakes, we applied dynamic Coulomb failure function (CFF) perturbation due to normal or shear stress changes. CFF perturbation increased the slip velocity after the cessation of perturbation, relative to that of the repeated events without triggering. This leads to dynamic earthquake triggering for certain perturbation amplitudes with time to instability of 0 to several tens of days. In addition, triggering potential of the static CFF jump (ΔCFFs) was investigated. Static stress perturbation has a higher triggering potential than dynamic stress perturbation for the same magnitude of CFF. The equivalent ΔCFFeq is evaluated for dynamic perturbation that results in a triggering potential approximately the same as in the case of static stress perturbation if ΔCFFs = ΔCFFeq. We calculated ΔCFFeq on the interface of the Philippine Sea plate for the Mie offshore earthquake, which occurred around the Nankai Trough on April 1, 2016, using OpenSWPC. The results shows that ΔCFFeq is large around the trough, where slow slip events followed the Mie earthquake, suggesting that a large ΔCFFeq may have triggered slow slip events.


2019 ◽  
Vol 94 ◽  
pp. 04007
Author(s):  
Mokhamad Nur Cahyadi ◽  
Ririn Wuri Rahayu ◽  
Buldan Muslim

Variometric Approach for Standalone Engine Displacement Analysis (VADASE) is a technique used in seismology purposes using GPS measurements. VADASE is used to determine the small displacement from the earthquake. The VADASE L1 solution is using the klobuchar ionospheric model. In this study VADASE was used in earthquakes with magnitudes> 7 to> 9 righter scales. In the scale of the earthquake category> 9 used Indian Ocean earthquake of December 26, 2016 with the strength of 9.1 SR by using the closest SAMP station and the Japanese Tohoku earthquake of March 11, 2011 with a power of 9.1 SR using 4 different stations namely MIZU, KMSV, TSK2 and Knii . The earthquake category with a scale of> 8 SR is the offshore earthquake Bio Bio, Chile on February 27, 2010 with a power of 8.8 SR using 2 stations namely ANTC and SANT, the Bengkulu Indonesia earthquake on 12 September 2007 with a power of 8.4 SR using the SAMP station, an illaper earthquake, chile September 16 2015 with 8.3 SR using SANT station, and Tres Piscos earthquake Mexico on September 8, 2017 with a power of 8.2 SR using IENG station. Earthquake with a strength of> 7 SR, namely the amberlay-New Zealand earthquake on November 13, 2016 with a strength of 7.8 SR using MRLL and WGTN stations, Puerto quello-chile earthquake on December 25, 2016 with a strength of 7.6 SR using COYQ station, Java sea earthquake -Indonesia on 8 August 2007 with 7.5 SR power using BAKO station and ayula mexico earthquake on 19 september 2017 with 7.1 SR power using INEG station. From the results of VADASE, the farthest distance from the epicenter to the observation station is 1100 km (INEG station) and the closest distance is 95 km (BAKO station). The highest speed is 0.12 m / s after 5 minutes from the earthquake in the earthquake Offshore Bio Bio-Chile 2010 uses the SANT station and the lowest speed is 0.006 m / s after 10 minutes from the earthquake in the 2007 Bengkulu earthquake using the SAMP station. Whereas in the other earthquakes was the 2011 Tohoku earthquake with a speed of 0.06 m / s after 1 minute using MIZU station, the amberley-New Zealand earthquake 2016 with a speed of 0.015 m / s after 1 minute using the MRLI satellite, Puerto quelloearthquake Chile 2016 with a speed of 0.025 m / s after 40 minutes using the COYQ satellite.


2018 ◽  
Vol 13 (7) ◽  
pp. 1333-1344
Author(s):  
Hajime Yokouchi ◽  
Yoshimitsu Ohashi ◽  
◽  

Several traditional building group districts exist in Japan as a system for preserving the remaining historical villages and townscapes of the country, along with their surrounding environment. In the northern Kanto region of Japan, there remain examples of many dozo-style structures called “Dozo-dukuri,” forming a distinctive historical townscape. In the 2011 Tohoku Region Pacific Offshore Earthquake, the traditional townscapes and dozo-style structures of the Kanto region were seriously damaged. When restoring the walls of damaged dozo-style structures to a sound condition, demolishing and reconstructing all the mud requires considerable labor; moreover, few modern artisans can construct mud walls. However, if there was a method that could recover the structural performance of the walls immediately via partial repair, the restoration of the walls could again become economical. Therefore, in this study, we first surveyed the specifications of mud walls in the northern Kanto region. Then, we performed horizontal loading tests on full-scale walls produced according to the survey results to determine the structural performance of walls under a horizontal force, e.g., an earthquake. Further, a test specimen damaged by a horizontal force was repaired, and a horizontal loading test was performed again. The results elucidated the structural performance recoverability obtained by the proposed repair method.


Oceanography ◽  
2018 ◽  
Vol 31 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Anne Tréhu ◽  
William Wilcock ◽  
Rose Hilmo ◽  
Paul Bodin ◽  
Jon Connelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document