scholarly journals NON-LINEAR EARTHQUAKE RESPONSE STUDY ON THE REINFORCED CONCRETE CHIMNEY : Part-1 Model tests and analysis

1974 ◽  
Vol 215 (0) ◽  
pp. 21-32,95
Author(s):  
YUTARO OMOTE ◽  
TOSHIKAZU TAKEDA
2004 ◽  
Vol 33 (4) ◽  
pp. 485-498 ◽  
Author(s):  
Wei Huang ◽  
Phillip L. Gould ◽  
Raul Martinez ◽  
Gayle S. Johnson

Author(s):  
Antonio Carlos Fernandes ◽  
Ronaldo Rosa Rossi

With the introduction of the polyester ropes as mooring lines of large systems such as semi-submersibles, the need to simulate these lines in model tests became a necessity. Although the non-linear behavior is clear, depending on the type of cycling, the polyester rope responds in ways that may be considered linear as a steel wire rope. Because of that, the early model tests have been performed using a linear restoring capability, with different restoring coefficients. The use of equivalent springs seemed the proper way. However, with the help of fundamental investigation on the similarity laws, the present work shows that the use of very thin polyester lines in model scaling is feasible and will indeed allow a closer physical representation. By avoid using springs, but using the same material as in full scale, the same non-linear behavior is present during the tests and even the response to random excitation due to random waves is better represented. The paper closely describes the application of these ideas in a model test of a FPSO (Floating Production Storage and Offloading) comparing both the linear springs and new approach with the model scale equivalent polyester line.


Author(s):  
Mikhail Sainov

Introduction. The main factor determining the stress-strain state (SSS) of rockfill dam with reinforced concrete faces is deformability of the dam body material, mostly rockfill. However, the deformation properties of rockfill have not been sufficiently studied yet for the time being due to technical complexity of the matter, Materials and methods. To determine the deformation parameters of rockfill, scientific and technical information on the results of rockfill laboratory tests in stabilometers were collected and analyzed, as well as field data on deformations in the existing rockfill dams. After that, the values of rockfill linear deformation modulus obtained in the laboratory and in the field were compared. The laboratory test results were processed and analyzed to determine the parameters of the non-linear rockfill deformation model. Results. Analyses of the field observation data demonstrates that the deformation of the rockfill in the existing dams varies in a wide range: its linear deformation modulus may vary from 30 to 500 МPа. It was found out that the results of the most rockfill tests conducted in the laboratory, as a rule, approximately correspond to the lower limit of the rockfill deformation modulus variation range in the bodies of the existing dams. This can be explained by the discrepancy in density and particle sizes of model and natural soils. Only recently, results of rockfill experimental tests were obtained which were comparable with the results of the field measurements. They demonstrate that depending on the stress state the rockfill linear deformation modulus may reach 700 МPа. The processing of the results of those experiments made it possible to determine the parameters on the non-linear model describing the deformation of rockfill in the dam body. Conclusions. The obtained data allows for enhancement of the validity of rockfill dams SSS analyses, as well as for studying of the impact of the non-linear character of the rockfill deformation on the SSS of reinforced concrete faces of rockfill dams.


Sign in / Sign up

Export Citation Format

Share Document