EVALUATION OF THE MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE OF STEELS USED IN HIGH-STRENGTH BOLTED STRUCTURAL JOINTS

1981 ◽  
Vol 308 (0) ◽  
pp. 82-93
Author(s):  
Kozo Wakiyama ◽  
Akio Tatsumi
2011 ◽  
Vol 268-270 ◽  
pp. 372-376 ◽  
Author(s):  
A. Chaboki-Khiabani ◽  
M. Bastami ◽  
M. Baghbadrani ◽  
M. Kordi

This paper presents the results of an experimental and statistical study on the effect of high temperatures on the retained mechanical properties of high-strength concretes (HSC). The mechanical properties of HSC significantly change during and later than exposure to elevated temperature. The compressive and splitting tensile strength of more than 400 HSC cylindrical specimens with sixteen mix proportion have investigated to study the effect of mix proportion on the retained mechanical properties of HSC specimens after heating. According to these results, a considerable loss was observed for all mixes and specimens in strength particularly in tensile splitting strength. In addition, these experimental data were investigated using Taguchi approach to find the effective parameters of mix proportion. Also, the most optimum mix proportion was found and checked experimentally. According to our results, by controlling some factors in the mix proportion, it is possible to reduce the retained destructive effects of elevated temperature on HSC specimens.


2006 ◽  
Vol 302-303 ◽  
pp. 138-149 ◽  
Author(s):  
Gai Fei Peng ◽  
Sammy Yin Nin Chan ◽  
Qi Ming Song ◽  
Quan Xin Yi

This paper presents a review on the effect of fire on concrete, citing 43 references. It was found that most of them are on the behavior of concrete under high temperature conditions more or less different from the standard fire condition. The problem of spalling, which high-strength concrete encounters when exposed to fire, is especially urgent to solve. Since the literature on the behavior of concrete under fire conditions is very limited, the literature even under elevated temperature has to be used as a part of the base of further research. The further research needs urgently to be carried out under the standard fire condition. Residual mechanical properties reported in most previous literature might be overestimated, where natural cooling was usually employed. Proper evaluation of fire resistance of concrete needs more experimental data obtained under various cooling regimes such as water spraying or water quenching.


2020 ◽  
Vol 114 ◽  
pp. 103010 ◽  
Author(s):  
Weiyong Wang ◽  
Yanhong Zhang ◽  
Lei Xu ◽  
Xiang Li

2016 ◽  
Vol 56 (10) ◽  
pp. 1874-1883 ◽  
Author(s):  
Carin Emmy Ingrid Christersdotter Ohlund ◽  
Mladena Lukovic ◽  
Jonathan Weidow ◽  
Mattias Thuvander ◽  
Sven Erik Offerman

2020 ◽  
Vol 156 ◽  
pp. 05010
Author(s):  
Muhammad Ridwan ◽  
Hu Liang Jun ◽  
Isamu Yoshitake

This study focuses on the thermo-mechanical properties of mortar in the retrofitting cover of additional reinforcement for existing concrete structures. In addition, the residual mechanical properties of high strength mortar incorporating polypropylene fibers subjected to the effect of fiber length and the elevated temperature were investigated. Several experiments were conducted to determine the optimum mixture proportions of high strength mortar incorporating polypropylene fibers which had a slump-flow of 25–30 cm, compressive strength of 50 MPa or higher, and flexural strength of 4–8 MPa. Subsequently, an experiment was conducted by using high-strength mortar-blended polypropylene fibers with a length of 2 cm, and the ratio of fiber length to the diameter of cylinder mortar-specimens was 0.4. The experimental parameters were the weight volume of fibers (0 %, 0.5 %, 1 %, and 2%) and the heating temperature (100, 200 and 300 °C). The effect of the mixing parameters, including polypropylene length on compressive strength, slump-flow and the flexural strength of mortar were discussed. It is evident that fiber in the mortar cover influenced the initial and residual mechanical properties, such as elasticity, compressive strength, and Poisson’s ratio, of the mortar.


2018 ◽  
Vol 30 (5) ◽  
pp. 04018062 ◽  
Author(s):  
Weiyong Wang ◽  
Kang Wang ◽  
Venkatesh Kodur ◽  
Bin Wang

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Muhammad Nasir Amin ◽  
Kaffayatullah Khan

This study investigated the effect of elevated temperatures on the mechanical properties of high-strength sustainable concrete incorporating volcanic ash (VA). For comparison, control and reference concrete specimens with fly ash (FA) were also cast along with additional specimens of VA and FA containing electric arc furnace slag (EAFS). Before thermal exposure, initial tests were performed to evaluate the mechanical properties (compressive strength, tensile strength, and elastic modulus) of cylindrical concrete specimens with aging. Additionally, 91 day moist-cured concrete specimens, after measuring their initial weight and ultrasonic pulse velocity (UPV), were exposed up to 800 °C and cooled to air temperature. Subsequently, the weight loss, residual UPV, and mechanical properties of concrete were measured with respect to exposure temperature. For all concrete specimens, test results demonstrated a higher loss of weight, UPV, and other mechanical properties under exposure to higher elevated temperature. Moreover, all the results of concrete specimens incorporating VA were observed before and after exposure to elevated temperature as either comparable to or slightly better than those of control and reference concrete with FA. According to the experimental results, a correlation was developed between residual UPV and residual compressive strength (RCS), which can be used to assess the RCS of fire-damaged concrete (up to 800 °C) incorporating VA and EAFS.


2011 ◽  
Vol 23 (6) ◽  
pp. 723-730 ◽  
Author(s):  
Gyu-Yong Kim ◽  
Young-Sun Kim ◽  
Gyeong-Cheol Choe ◽  
Hyun-Gil Park ◽  
Tae-Gyu Lee

Sign in / Sign up

Export Citation Format

Share Document