scholarly journals APPLICATION OF MOLTEN SLAG FINE AGGREGATE CONCRETE WITH AIR ENTRAINING AND HIGH-RANGE WATER REDUCING AGENTS : Changes in quality of molten slag fine aggregate and a full-scale construction trial(Materials and Construction)

2005 ◽  
Vol 11 (21) ◽  
pp. 1-6
Author(s):  
Shuzo OTSUKA ◽  
Yoshihisa NAKATA ◽  
Takeshi SAITOH ◽  
Hiroki TAKAHASHI ◽  
Keishi TOBINAI ◽  
...  
2006 ◽  
Vol 302-303 ◽  
pp. 329-338
Author(s):  
Shuzo Otsuka ◽  
Yoshihisa Nakata ◽  
Takeshi Saito ◽  
Hiroki Takahashi ◽  
Keishi Tobinai ◽  
...  

With increasing number of melting-solidification plants for the domestic wastes and incineration ashes, the resulting molten slag is now expected as a recycled aggregate for concrete in Japan, while application examples until now are limited to non-loadbearing pre-cast concrete and concrete secondary products. This study deals with a full-scale application of molten slag recycled fine aggregate. Starting with the inspection of monthly variations in quality of molten slag fine aggregate in a plant, construction of a full-scale structure was attempted using the recycled aggregate concrete with a superplasticizer. During construction, pumpability of the recycled concrete was examined and the quality of hardened concrete in the structure was evaluated. It was shown that quality variation of the molten slag fine aggregate during eight months was sufficiently small, and pumpability as well as concrete quality in structure showed no significant difference with those of the ordinary concrete.


Jurnal Teknik ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 23-31
Author(s):  
Sigit Agung Priyono ◽  
Hammam Rofiqi Agustapraja

Light brick waste is fragments or pieces of scrap leftover during the installation of lightweight bricks which are often allowed to pile up and becoming garbage in the surrounding area. The waste is difficult to recycle and has a very low selling value. This study aims to assess the compressive strength of mixed composition concrete specimens using lightweight brick waste on the quality of K-250 concrete aged 7 days as a mixture of fine aggregate concrete so that it becomes a product that has better-added value for the community. The research method used in this research is SNI for concrete based on data from literature and the test was carried out in the UNISLA laboratory. The results showed that the use of a 0% mixture of lightweight brick waste resulted in compressive strength of 21.78 Mpa, 3% mixture yielded compressive strength of 18.87 Mpa, 5% mixture yielded compressive strength of 24.39 Mpa, and 7% mixture yielded compressive strength of 26.00 Mpa.


Author(s):  
Shuzo Otsuka ◽  
Yoshihisa Nakata ◽  
Takeshi Saito ◽  
Hiroki Takahashi ◽  
Keishi Tobinai ◽  
...  

1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


1993 ◽  
Vol 28 (2) ◽  
pp. 17-26 ◽  
Author(s):  
V. Eroǧlu ◽  
A. M. Saatçi

Recent advances made in the reuse of pulp and paper industry sludges in hardboard production are explained. Data obtained from pilot and full-scale plants using primary sludge of a pulp and paper industry as an additive in the production of hardboard is presented. An economic analysis of the reuse of pulp and paper primary sludge in hardboard manufacturing is given. The quality of the hardboard produced is tested and compared with the qualities of the hardboard produced by the same plant before the addition of primary sludge. The hardboard with primary sludge additive has been used in Turkey for about a year in the manufacturing of office and home furniture. The results are very satisfactory when the primary sludge is used at 1/4 ratio.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


Sign in / Sign up

Export Citation Format

Share Document