scholarly journals Study of Securing Required Ventilation Rates and Improving Mechanical Ventilation Systems for Underground Parking Lots

2016 ◽  
Vol 15 (3) ◽  
pp. 659-665 ◽  
Author(s):  
Se-Jin Ahn ◽  
Hyuk-Min Kwon ◽  
Geum-Hee Kim ◽  
Jeong-Hoon Yang
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5257
Author(s):  
Iain Walker ◽  
Brennan Less ◽  
David Lorenzetti ◽  
Michael D. Sohn

This study examined the use of zoned ventilation systems using a coupled CONTAM/EnergyPlus model for new California dwellings. Several smart control strategies were developed with a target of halving ventilation-related energy use, largely through reducing dwelling ventilation rates based on zone occupancy. The controls were evaluated based on the annual energy consumption relative to continuously operating non-zoned, code-compliant mechanical ventilation systems. The systems were also evaluated from an indoor air quality perspective using the equivalency approach, where the annual personal concentration of a contaminant for a control strategy is compared to the personal concentration that would have occurred using a continuously operating, non-zoned system. Individual occupant personal concentrations were calculated for the following contaminants of concern: moisture, CO2, particles, and a generic contaminant. Zonal controls that saved energy by reducing outside airflow achieved typical reductions in ventilation-related energy of 10% to 30%, compared to the 7% savings from the unzoned control. However, this was at the expense of increased personal concentrations for some contaminants in most cases. In addition, care is required in the design and evaluation of zonal controls, because control strategies may reduce exposure to some contaminants, while increasing exposure to others.


2021 ◽  
Vol 13 (2) ◽  
pp. 679
Author(s):  
Roya Aeinehvand ◽  
Amiraslan Darvish ◽  
Abdollah Baghaei Daemei ◽  
Shima Barati ◽  
Asma Jamali ◽  
...  

Today, renewable resources and the crucial role of passive strategies in energy efficiency in the building sector toward the sustainable development goals are more indispensable than ever. Natural ventilation has traditionally been considered as one of the most fundamental techniques to decrease energy usage by building dwellers and designers. The main purpose of the present study is to enhance the natural ventilation rates in an existing six-story residential building situated in the humid climate of Rasht during the summertime. On this basis, two types of ventilation systems, the Double-Skin Facade Twin Face System (DSF-TFS) and Single-Sided Wind Tower (SSWT), were simulated through DesignBuilder version 4.5. Then, two types of additional ventilation systems were proposed in order to accelerate the airflow, including four-sided as well as multi-opening wind towers. The wind foldable directions were at about 45 degrees (northwest to southeast). The simulation results show that SSWT could have a better performance than the aforementioned systems by about 38%. Therefore, the multi-opening system was able to enhance the ventilation rate by approximately 10% during the summertime.


2005 ◽  
Vol 39 (34) ◽  
pp. 6315-6325 ◽  
Author(s):  
Jerker Fick ◽  
Linda Pommer ◽  
Anders Åstrand ◽  
Ronny Östin ◽  
Calle Nilsson ◽  
...  

2018 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Arman Kostuganov ◽  
Yuri Vytchikov ◽  
Andrey Prilepskiy

The article describes development and application of self-contained ventilation systems in civil buildings. It suggests several models of air exchange within the building, compares these models and points out the variant of ventilating with self-contained mechanical systems with utilization of heat. The researchers conclude that structurally self-contained systems of mechanical ventilation with utilization of heat are most efficiently built into window constructions. This installation variant makes it possible to keep the interior, avoid building construction strengthening, shorten time and labor input of construction-assembling works, allow rational use of the vertical building envelopes area without extra space using. The paper key issue is the development of constructive solutions of self-contained ventilation systems main elements to ensure the possibility of their use in window structures. This research stage was developed with account of previous results of field tests and of such ventilation systems theoretical descriptions. The authors assess limit dimensions of the systems suitable for installment into window constructions of civil buildings in the view of modern Russian requirements to thermal protection. The research suggests a general constructive solution of such a ventilation system and a heat exchanger model which can be used as an air heat utilizer in these systems.


2019 ◽  
Vol 18 (4) ◽  
pp. 303-312 ◽  
Author(s):  
Jack Harvie-Clark ◽  
Nick Conlan ◽  
Weigang Wei ◽  
Mark Siddall

Sign in / Sign up

Export Citation Format

Share Document