scholarly journals Development of Advanced Smart Ventilation Controls for Residential Applications

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5257
Author(s):  
Iain Walker ◽  
Brennan Less ◽  
David Lorenzetti ◽  
Michael D. Sohn

This study examined the use of zoned ventilation systems using a coupled CONTAM/EnergyPlus model for new California dwellings. Several smart control strategies were developed with a target of halving ventilation-related energy use, largely through reducing dwelling ventilation rates based on zone occupancy. The controls were evaluated based on the annual energy consumption relative to continuously operating non-zoned, code-compliant mechanical ventilation systems. The systems were also evaluated from an indoor air quality perspective using the equivalency approach, where the annual personal concentration of a contaminant for a control strategy is compared to the personal concentration that would have occurred using a continuously operating, non-zoned system. Individual occupant personal concentrations were calculated for the following contaminants of concern: moisture, CO2, particles, and a generic contaminant. Zonal controls that saved energy by reducing outside airflow achieved typical reductions in ventilation-related energy of 10% to 30%, compared to the 7% savings from the unzoned control. However, this was at the expense of increased personal concentrations for some contaminants in most cases. In addition, care is required in the design and evaluation of zonal controls, because control strategies may reduce exposure to some contaminants, while increasing exposure to others.

Author(s):  
Kai Wang ◽  
Xinping Yan ◽  
Yupeng Yuan

Nowadays, with the higher voice of ship energy saving and emission reduction, the research on energy efficiency management is particularly necessary. Energy efficiency management and control of ships is an effective way to improve the ship energy efficiency. In this paper, according to the new clean propulsion system configurations of 5000 tons of bulk carrier, the energy efficiency management control strategy of the clean propulsion system is designed based on the model of advanced brushless doubly-fed shaft generator, propulsion system using LNG/diesel dual fuel engine and energy consumption of the main engine for reducing energy consumption. The simulation model of the entire propulsion system and the designed control strategy were designed. The influence of the engine speed on the ship energy efficiency was analyzed, and the feasibility of the energy efficiency management control strategies was verified by simulation using Matlab/Simulink. The results show that the designed strategies can ensure the power requirement of the whole ship under different conditions and improve the ship energy efficiency and reduce CO2 emissions.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 971 ◽  
Author(s):  
Zhai ◽  
Yang ◽  
Li ◽  
Jiang ◽  
Ye ◽  
...  

Soil contamination remains a global problem. Among the different kinds of remediation technologies, in situ soil thermal remediation has attracted great attention in the environmental field, representing a potential remedial alternative for contaminated soils. Soils need to be heated to a high temperature in thermal remediation, which requires a large amount of energy. For the natural gas heating system in thermal remediation, a fuzzy coordination control strategy and thermohydraulic dynamics model have been proposed in this paper. In order to demonstrate the superiority of the strategy, the other three traditional control strategies are introduced. Analysis of the temperature rise and energy consumption of soils under different control strategies were conducted. The results showed that the energy consumption of fuzzy coordination control strategy is reduced by 33.9% compared to that of the traditional control strategy I, constant natural gas flow and excess air ratio. Further, compared to the traditional control strategy II, constant excess air ratio and desired outlet temperature of wells, the strategy proposed can reduce energy consumption by 48.7%. The results illustrate the superiority of the fuzzy coordination control strategy, and the strategy can greatly reduce energy consumption, thereby reducing the cost of in situ soil thermal remediation.


1978 ◽  
Vol 22 (1) ◽  
pp. 538-538
Author(s):  
James E. Woods

In response to current concerns about the depletion rates of non-renewable energy resources, new codes and standards have been promulgated which require improved construction techniques and reduced ventilation rates. While implementation of these codes and standards has reduced energy consumption rates, degradation of indoor air quality has also been reported. These complaints indicate that arbitrary reduction of ventilation rates can result in deleterious effects to the occupants. Thus, a compromise solution is required with the objective to provide a safe, healthy, and comfortable indoor environment by using materials and methods that optimize efficiency of energy use.


Author(s):  
Ali A. Jal-Alzadeh-Azar ◽  
Ren Anderson ◽  
Keith Gawlik

This paper demonstrates the potential impact of indoor air distribution on the energy consumption of central HVAC systems with cognizance of human thermal comfort. The study focuses on a hypothetical high-performance house incorporating a split heat pump system. The air distribution of this building incorporates high sidewall supply-air registers and near-floor, wall-mounted return-air grilles. Heating-mode stratification resulting from this prevalent configuration is a prime example of situations in which challenges regarding energy efficiency, comfort, and ventilation effectiveness emerge. These challenges underline the importance of adopting a comprehensive design strategy for high-performance buildings. Two indoor air distribution scenarios were analyzed: (1) theoretically well mixed and (2) poorly mixed, representing a realistic case. The former scenario was evaluated using an analytical approach, whereas the latter was investigated through computational fluid dynamics (CFD) simulations. For heating mode, the results indicated the presence of a pronounced thermal stratification resulting from poor air mixing. At 50% of the design heating load, for the well-mixed case, the HVAC system energy consumption was significantly higher. Considerably better air distribution performance was observed with cooling mode, in which the relative energy penalty for the well-mixed scenario was noticeably less. In real-world applications where measures must be taken to achieve near perfectly mixed indoor conditions for better comfort, the energy use is expected to be even higher. However, in the absence of such measures, the thermostat setpoint is likely to be readjusted, leading to a higher energy use without necessarily improving the overall comfort level, as demonstrated in this paper. The limitation of increasing the supply-air flow rate to enhance air mixing and diffusion is also discussed in terms of the system moisture removal capability.


2011 ◽  
Vol 6 (3) ◽  
pp. 168-180 ◽  
Author(s):  
Alireza Khaleghi ◽  
Karen Bartlett ◽  
Murray Hodgson

This paper discusses a pilot project involving the direct monitoring of ventilation, indoor-air quality and the acoustical conditions in selected nominally ‘green’ and non-‘green’ buildings located on a university campus. The objectives were to measure parameters quantifying these three aspects of indoor environmental quality, determine the relationships between them and the building-design concepts, and evaluate the implications of the results for ventilation-system design, especially in ‘green’ buildings. Measurements were made in rooms, with and without acoustical treatment, in buildings with natural ventilation or mechanical (displacement and/or mixed-flow) ventilation systems. Measurements were made of ventilation rates (air changes per hour), indoor air quality (respirable-fibre, total-VOC and ultrafine-particulate concentrations), and the acoustical conditions (noise levels and reverberation times). Correlations between the environmental results, the building concept, the ventilation concept and the building window status were explored. In rooms with natural ventilation, low-frequency noise and total sound-pressure levels were lower; however, the rooms had higher ultrafine-particulate counts and lower ventilation rates. Rooms with mechanical ventilation had higher low-frequency and total sound-pressure levels, higher ventilation rates and fibre concentrations, but lower concentrations of ultrafine particulates. It was concluded that, in general, mechanical ventilation can provide better indoor air-quality, but that HVAC noise is an issue if the system is not properly designed. In ‘green’ buildings, noise levels were acceptable when the windows were closed, but increasing the ventilation rate by opening the windows resulted in higher noise levels. The results suggest that the acceptability of environmental factors in buildings depends on the degree of compliance of the design and its implementation with standards and design guidelines (i.e. for ventilation, air quality, thermal comfort, etc.), whether the original design concept is ‘green’ or non-‘green’.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 98
Author(s):  
Effrosyni Giama

Buildings are responsible for approximately 30–40% of energy consumption in Europe, and this is a fact. Along with this fact is also evident the existence of a defined and strict legislation framework regarding energy efficiency, decarbonization, sustainability, and renewable energy systems in building applications. Moreover, information and communication technologies, along with smart metering for efficient monitoring, has come to cooperate with a building’s systems (smart buildings) to aim for more advanced and efficient energy management. Furthermore, the well-being in buildings still remains a crucial issue, especially nowadays that health and air quality are top priority goals for occupants. Taking all the above into consideration, this paper aims to analyze ventilation technologies in relation to energy consumption and environmental impact assessment using the life cycle approach. Based on the review analysis of the existing ventilation technologies, the emphasis is given to parameters related to the efficient technical design of ventilation systems and their adequate maintenance under the defined guidelines and standards of mechanical ventilation operation. These criteria can be the answer to the complicated issue of energy efficiency along with indoor air quality targets. The ventilation systems are presented in cooperation with heating and cooling system operations and renewable energy system applications ensuring an energy upgrade and reduced greenhouse gas emissions. Finally, the mechanical ventilation is examined in a non-residential building in Greece. The system is compared with the conventional construction typology of the building and in cooperation with PVs installation in terms of the environmental impact assessment and energy efficiency. The methodology implemented for the environmental evaluation is the Life Cycle Analysis supported by OpenLca software.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2123 ◽  
Author(s):  
Lamberto Tronchin ◽  
Kristian Fabbri ◽  
Chiara Bertolli

Indoor air quality (IAQ) of buildings is a problem that affects both comfort for occupants and the energy consumption of the structure. Controlled mechanical ventilation systems (CMVs) make it possible to control the air exchange rate. When using CMV systems, it is interesting to investigate the relationship between the useful thermal energy requirements for ventilation and the energy consumption of these systems. This paper addresses whether there is a correlation between these two parameters. The methodology used in this work involves the application of equations of technical Italian regulations UNI/TS 11300 applied to a case study. The case study is represented by a 54 m3 room, which is assumed to have three CMV systems installed (extraction, insertion, insertion and extraction) for twenty different devices available on the market. Afterwards, simulations of useful thermal energy requirements QH,ve and primary energy EP,V were performed according to the electrical power of each fan W and the ventilation flow. The results show that the two values are not linearly correlated: it is not possible to clearly associate the operating cost for CMV systems according to building requirements. The study also shows that CMV systems are particularly efficient for high-performance buildings, where there is no leakage that can be ascribed to windows infiltrations.


Sign in / Sign up

Export Citation Format

Share Document