scholarly journals Hydrogeology of, simulation of groundwater flow in, and potential effects of sea-level rise on the Kirkwood-Cohansey aquifer system in the vicinity of Edwin B. Forsythe National Wildlife Refuge, New Jersey

Author(s):  
Alex R. Fiore ◽  
Lois M. Voronin ◽  
Christine M. Wieben
Shore & Beach ◽  
2021 ◽  
pp. 13-20
Author(s):  
Albert McCullough ◽  
David Curson ◽  
Erik Meyers ◽  
Matthew Whitbeck

Tidal marsh loss at Blackwater National Wildlife Refuge (NWR) has been a major concern of refuge managers in recent decades. The approximately 2,035 hectares (5,028 acres) of tidal marsh that have converted to open water in Blackwater NWR since 1938 (Scott et al. 2009) represent one of the most significant areas of marsh conversion within the Chesapeake Bay. In 2013, a suite of climate adaptation strategies focused on sea level rise was developed for Blackwater NWR and surrounding areas of Dorchester County by the Blackwater Climate Adaptation Project (BCAP). The BCAP is a collaboration of The Conservation Fund, Audubon Maryland-DC, and the U.S. Fish and Wildlife Service, assisted by the Maryland Department of Natural Resources (MD DNR), U.S. Geological Survey, and others. In 2016, the BCAP implemented a thin-layer placement (TLP) project at Shorter’s Wharf in Blackwater NWR on 16 hectares (40 acres) of subsiding and fragmenting tidal marsh dominated by Schoenoplectus americanus, Spartina alterniflora, and Spartina patens. The purpose of the project was to increase the 16 hectares’ (40 acres’) resiliency to climate-driven sea level rise and storm impacts. The project built up the marsh elevation by applying thin layers of sediment dredged from the adjacent Blackwater River. The sediment enhancement was designed to extend the longevity of the marsh and increase its resiliency by raising its surface elevation in relation to the tidal regime and to return the habitat to its prior high-marsh condition with S. patens dominating. The colonization of this site by saltmarsh sparrow would be an indicator of success in reaching this goal. Dredging operations in November and December 2016 placed approximately 19,900 cubic meters (26,000 cubic yards) of sediment on the project site. Post-restoration elevations obtained one year after material placement indicated that, although the target elevations were achieved in 78% of the surveyed placement area, the material was not distributed uniformly. Coarser material tended to stack up at the discharge location while the grain size declined and the slopes flattened toward the periphery of the discharge area. In 2017, natural vegetation had regenerated through the placed sediment with vigorous regrowth of S. americanus and S. alterniflora . This regrowth was supplemented with hand-planting of more than 200,000 plugs of S. patens. Vegetation monitoring is ongoing to determine the plant composition evolution within the placement site. Pre-dredge and post-dredge bathymetric surveys reveal 70% accretion nearly two years after dredging within the borrow area footprint.


Shore & Beach ◽  
2021 ◽  
pp. 73-82
Author(s):  
Rusty Feagin ◽  
Thomas Huff ◽  
Kevin Yeager ◽  
Sam Whitehead

The Slop Bowl marsh in the Brazoria National Wildlife Refuge provides extraordinarily high quality, heavily used bird habitat. Much of this habitat has experienced hypersaline conditions due to both hydrologic alteration by humans and a rapidly and changing physical environment over the past several decades. Oil and natural gas extraction activities have resulted in excavation and channelization along pipelines and hydrologic obstruction by an access road. In addition, subsidence along growth faults has altered hydrologic pathways and lowered surface elevations in the center of the marsh. Our objective was to understand the underlying processes that contribute to hypersaline conditions and to evaluate possible restoration alternatives to reduce the severity of those conditions. Accordingly, we conducted extensive field and hydrologic modeling efforts, and identified the past, present, and future of this marsh habitat under a baseline scenario. We then compared various restoration action scenarios against this baseline. We found that, beginning in about 15 years, relative sea level rise will improve the hydrologic conditions by enhancing tidal flushing. However, if fill material is continually added to elevate the obstructing road as the sea rises, this hydrologic relief may never be realized. Moreover, we found that if a drought occurs during this critical period, a difference of only a few centimeters in the relative water level and road elevation, or changes in marsh surface elevations driven by fault motion and subsidence, may have catastrophic consequences. The modeling also suggests that several potential interventions can bridge this gap over the next 15 years and beyond. Actions that improve tidal circulation, reduce salinity, and enhance marsh accretion are being developed by the project team to enhance and restore habitat in the near term. The most optimal approaches evaluated thus far include the installation of culverts at critical locations, the excavation of a small channel, the modification of flow pathways, and the beneficial use of sediments and vegetative plantings. We conclude that, under specific circumstances or at unique locations such as the Slop Bowl marsh, sea level rise can be leveraged to improve coastal wetland health.


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2008 ◽  
Vol 90 (4) ◽  
pp. 475-492 ◽  
Author(s):  
Matthew J. P. Cooper ◽  
Michael D. Beevers ◽  
Michael Oppenheimer

2017 ◽  
Vol 8 (1) ◽  
pp. 209-218
Author(s):  
Kevin M. Ringelman ◽  
Christopher K. Williams ◽  
Paul M. Castelli ◽  
Mason L. Sieges ◽  
Rebecca A. Longenecker ◽  
...  

Abstract The management of wintering North American waterfowl is based on the premise that the amount of foraging habitat can limit populations. To estimate carrying capacity of winter habitats, managers use bioenergetic models to quantify energy (food) availability and energy demand, and use results as planning tools to meet regional conservation objectives. Regional models provide only coarse estimates of carrying capacity because habitat area, habitat energy values, and temporal trends in population-level demand are difficult to quantify precisely at large scales. We took advantage of detailed data previously collected on wintering waterfowl at Edwin B. Forsythe National Wildlife Refuge and surrounding marsh, New Jersey, USA, and created a well-constrained local model of carrying capacity. We used 1,223 core samples collected between 2006 and 2015 to estimate available food. We used species-specific 24-h time-activity data collected between 2011 and 2013 to estimate daily energy expenditure, morphometrically corrected for site- and day-specific thermoregulatory costs. To estimate population-level energy demand, we used standardized monthly ground-surveys (2005–2014) to create a migration curve, and proportionally scaled that to fit aerial survey data (2005–2014). Crucially, we also explicitly incorporated estimates of variance in all of these parameters and conducted a sensitivity analysis to diagnose the most important sources of variation in the model. Our results indicated that at estimated mean levels of supply (2.34 × 109 kcal) and cumulative demand (3.4 × 109 kcal), refuge resources were depleted before the end of the wintering season. However, at one standard error greater in supply and one standard error less in demand, 1.33 × 109 kcal remained on the landscape at the end of winter. Variation in model output appeared to be driven primarily by uncertainty in food abundance in high marsh habitats. This model allows for relative assessment of biases and uncertainties in carrying capacity modeling, and serves as a framework identifying critical science needs to improve local and regional waterfowl management planning.


The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
Samuel G Roberts ◽  
Rebecca A Longenecker ◽  
Matthew A Etterson ◽  
Chris S Elphick ◽  
Brian J Olsen ◽  
...  

Abstract Globally limited to 45,000 km2, salt marshes and their endemic species are threatened by numerous anthropogenic influences, including sea-level rise and predator pressure on survival and nesting success. Along the Atlantic coast of North America, Seaside (Ammospiza maritima) and Saltmarsh (A. caudacuta) sparrows are endemic to salt marshes, with Saltmarsh Sparrows declining by 9% annually. Because vital rates and factors affecting population persistence vary for both species, local estimates are necessary to best predict population persistence in response to management actions. We used a metapopulation model to estimate the population viability of the breeding Seaside and Saltmarsh sparrow populations in coastal New Jersey over a 42-yr period. We incorporated empirical data on the vital rates and abundances of these populations and simulated the effect of low (0.35 m) and high (0.75 m) levels of sea-level rise. We found that the Seaside Sparrow population persisted under both sea-level rise scenarios; however, the Saltmarsh Sparrow population reached a quasi-extinction threshold within 20 yr. Using the same framework, we modeled potential management scenarios that could increase the persistence probability of Saltmarsh Sparrows and found that fecundity and juvenile survival rates will require at least a 15% concurrent increase for the local population to persist beyond 2050. Future field research should evaluate the feasibility and effectiveness of management actions, such as predator control, for increasing Saltmarsh Sparrow vital rates in order to maintain the species in coastal New Jersey.


2009 ◽  
Vol 66 (1-2) ◽  
pp. 10-18 ◽  
Author(s):  
Kenneth G. Miller ◽  
Peter J. Sugarman ◽  
James V. Browning ◽  
Benjamin P. Horton ◽  
Alissa Stanley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document