scholarly journals 3D flow of Carreau polymer fluid over variable thickness sheet in a suspension of microorganisms with Cattaneo-Christov heat flux

2018 ◽  
Vol 64 (5) ◽  
pp. 519 ◽  
Author(s):  
P. Durga Prasad ◽  
S. V. K. Varma ◽  
C.S.K. Raju ◽  
Sabir Ali Shehzad ◽  
M.A. Meraj

Numerical study of three dimensional Carreau liquid flow with heat and mass transport features over a variable thickness sheet filled with microorganisms is analyzed. We considered the non-uniform heat sink or source and multiple slip effects. The governing non-linear partially differential expressions are developed into ordinary differential systems by using variable transformations. These expressions are solved numerically by using Runge-Kutta fourth order method connected with shooting methodology. A Parametric study is implemented to demonstrate the effects of Hartmann number, Prandtl number, Weissenberg number, Peclet number, chemical reaction and heat sink/source parameters on liquid velocity, temperature and concentration profiles. The quantities of physical interest are described within the boundary layer. From this analysis, we found that the magnetic parameter decrease the local Sherwood and local Nusselt numbers for both and cases. The constraint of chemical reaction enhances the mass transfer rate and decelerates the density of motile mass transfer rate. The space dependent and temperature dependent heat source/sink suppress the local Nusselt number.

2018 ◽  
Vol 387 ◽  
pp. 474-497 ◽  
Author(s):  
Kempannagari Anantha Kumar ◽  
Bujula Ramadevi ◽  
Vangala Sugunamma

In this article, we examined the magnetohydrodynamic Cattaneo-Christov bio convective flow of Carreau liquid over a variable thickness sheet with irregular heat sink/source. The fluid motion is supposed to be time dependent and not turbulent. Firstly, proper transmutations are pondered to metamorphose the basic flow equations as ODE. The solution of these ODEs is procured by the sequential execution of R.K. and Shooting numerical treatments. The density of motile organisms, concentration, temperature and velocity distributions for dissimilar values of non-dimensional parameters are perused via graphs. Further, we analyzed the impact of same parameters on friction factor, local Nusselt number and the rate of mass transfer coefficients and presented in table. Results indicate that the distribution of the density of motile organisms is an increasing function of Peclet and Lewis numbers. Fluid velocity is proportional to the Weissenberg number. Also the space dependent heat sink/source parameters perform obligatory role in the mass and heat transport performance.


2018 ◽  
Vol 8 (4) ◽  
pp. 3223-3227
Author(s):  
A. Latreche ◽  
M. Djezzar

In this study, two dimensional natural convection heat and mass transfer generated in an inclined rectangular porous cavity filled with Newtonian fluid has been investigated numerically. The cavity is heated and cooled along horizontal walls while the solutal gradient is imposed horizontally. The physical model for the momentum conservation equation makes use of the Darcy model, and the set of coupled equations is solved using a finite volume approach. The successive-under-relaxation (SUR) method is used in the solution of the stream function equation. The results are presented graphically in terms of streamlines, isotherms and iso-concentrations. The heat and mass transfer rate in the cavity is measured in terms of the average Nusselt and Sherwood numbers for various non-dimensional parameters.


Author(s):  
Rahul Bhujbal ◽  
Sanjay Nakate ◽  
Sunil V. Dingare

Abstract The refrigeration systems are used in domestic and commercial freezing applications. These systems are needed to be used energy efficiently to get the economic operation condition. The vapor compression refrigeration cycle (VCR) is getting replaced by vapor absorption refrigeration system (VARS) as they can use low grade energy. This VARS can be used by making use of waste energy in the form of heat which is readily available for many applications. Performance of the VARS is dependent on the generator and absorber performance. In absorber it is based on the amount of refrigerant absorbed and the solution flow rate. Experimental and Numerical study of bubble absorber and effect of nanoparticle on ammonia water mass transfer is carried out. In this study, different designs for the absorber chamber are viewed and compared together, based on the research did earlier. Looking at the aspects of bubble type absorber designs, these designs give better mass transfer performance as compared to other designs. These designs may be improved to get the energy efficient design of the absorber. Present study includes the enhancement of mass transfer rate by the addition of nanoparticles using aluminum oxide (Al2O3). Here, sparged vessels with NH3-H2O binary fluid are arranged with varying percentage of nanoparticle (Al2O3). This study includes the study of mass transfer enhancements by using nanoparticles. Based on the experimental results carried out for the varying mass flow rates it is found that the mass transfer rate is enhanced significantly, it is because the interfacial area is enhanced by the addition of nanoparticles to the base fluids.


2012 ◽  
Vol 516-517 ◽  
pp. 97-106 ◽  
Author(s):  
Bin Zhang ◽  
Wan Qing Wu ◽  
Jian Wei Zhang

Abstract. Aiming at analyzing boiling mechanism and confirming rapid phase Abstract. Aiming at analyzing boiling mechanism and confirming rapid phase transfer (RPT) taking place conditions of LNG discharging on water. The models of pool spreading, heat and mass transfer rate and LNG’s property are coupled in this paper. The conditions of RPT has been confirmed, which included LNG directly contacting with water and the water temperature should higher than LNG’s superheat limit temperature, but the RPT would not take place if the LNG boils on ice. The model of LNG discharging on water has been established in this paper, which is used to simulate Boe and Burro-9 experiments. The results showed that the models can simulate evaporation and boiling rate well, and can be used in predicting the initial time of RPT happening when the discharging process is calm and the location of discharging is near the water surface.


2012 ◽  
Vol 45 ◽  
pp. 708-712 ◽  
Author(s):  
Ulf Daniel K^|^uuml;ck ◽  
Michael Schl^|^uuml;ter ◽  
Norbert R^|^auml;biger

1979 ◽  
Vol 44 (9) ◽  
pp. 2780-2789 ◽  
Author(s):  
Milada Řeháková ◽  
Vladimír Rod

Extraction of acetic acid from isobutanol into aqueous solution of sodium hydroxide in the system with flat interface was studied. The effect of interfacial turbulence, induced by chemical reaction on the mass transfer rate of reacting components across the interface was determined independently from measurements of mass transfer rate of non-reacting solvents. The concept of enhancement factor was used for description of the phenomenon. The effect of interfacial turbulence on mass transfer rate was expressed by the additive term to the rate of energy dissipation on the interface.


Author(s):  
Zhi-Ying Zheng ◽  
Lu Wang ◽  
Qian Li ◽  
Yue Wang ◽  
Wei-Hua Cai ◽  
...  

A novel supercavitation-based device named Rotational Supercavitating Evaporator (RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in RSCE for performance optimization and then design three-dimensional blades, two-dimensional numerical simulations are conducted on the supercavitating flows (with cavitation number ranging from 0.055 to 0.315) around six planar symmetric cavitators with different streamlined headforms utilizing k – ε – v′2 – f turbulence model and Schnerr-Sauer cavitation model. We obtain the characteristics of natural supercavitation for each cavitator, including the shape and resistance characteristics and the mass transfer rate from liquid phase to vapor phase. The effects of the shape of the headform on these characteristics are analyzed. The results show that the supercavity sizes for most cavitators with streamlined headforms are smaller than that for wedge-shaped cavitator, except for the one with the profile of the forebody concaving to the inside of the cavitator. Cavitation initially occurs on the surface of the forebody for the cavitators with small curvature of the front end. Even though the pressure drag of the cavitator with streamlined headform is dramatically reduced compared with that of wedge-shaped cavitator, the pressure drag still accounts for most of the total drag. Both the drag and the mass transfer rate from liquid phase to vapor phase are in positive correlation with the supercavity size, indicating that the cavitators with the elliptic and hyperbolic cosine-type forebodies could be utilized for the optimal design of three-dimensional blade shape of RSCE.


2021 ◽  
Vol 19 (3) ◽  
pp. 295-308
Author(s):  
Jin Zunlong ◽  
Liu Yonghao ◽  
Dong Rui ◽  
Wang Dingbiao ◽  
Chen Xiaotang

Abstract A numerical study of the gas–liquid two-phase flow and mass transfer in a square microchannel with a T-junction is carried out in this work. Through numerical simulation methods, the flow patterns of bubble flow, slug flow and annular flow are determined. By proposing a new flow pattern conversion relationship with different media and different speeds, 100 sets of CO2-water flow patterns and 100 sets of CO2-ethanol flow patterns are obtained. The effects of surface tension on flow pattern, bubble length and liquid plug length are studied. The pressure distribution and pressure drop are analyzed, and mass transfer is obtained through slug flow simulation, and the influencing factors of gas–liquid mass transfer are studied. The results show that the effect of surface tension on the length of the bubble and the length of the liquid plug is completely opposite, the pressure distribution is stepped, and the pressure drop increases with the increase of the gas–liquid velocity. In addition, it was found that the volumetric mass transfer coefficients of the bubble cap and the liquid film gradually decreased with time, and eventually stabilized. The increase in bubble velocity accelerates the mass transfer rate, while the increase in unit cell length slows the mass transfer rate. However, the influence of film thickness and liquid film length on mass transfer varies with time.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1215
Author(s):  
Nur Azlina Mat Noor ◽  
Sharidan Shafie ◽  
Mohd Ariff Admon

The heat and mass transfer characteristics on hydromagnetic squeeze flow of Jeffrey nanofluid between two plates over a permeable medium by slip condition with the influences of viscous dissipation and chemical reaction is examined. Buongiorno’s nanofluid model, which includes Brownian motion and thermophoresis impacts, is implemented in this research. The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations via asimilarity transformation. The transformed equations are solved by employing numerical techniques of Keller-box. A comparison of the skin friction coefficient, Nusselt and Sherwood numbers with reported outputs in the journals are carried out to validate the present outputs. An excellent agreement is found. The results show that the squeezing of plates accelerates the velocity and wall shear stress. Furthermore, the velocity, temperature and concentration profile decrease when the Hartmann number and ratio of relaxation and retardation times increases. The raise in thermophoresis and viscous dissipation elevate the temperature profile and the heat transfer rate. Furthermore, the mass transfer rate declines due to the strong Brownian motion in the nanofluid, whereas it increases with the addition of chemical reaction and thermophoresis.


Sign in / Sign up

Export Citation Format

Share Document