scholarly journals Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study

2018 ◽  
Vol 64 (1) ◽  
pp. 94 ◽  
Author(s):  
D.M. Hoat ◽  
J.F. Rivas Silva ◽  
A. Méndez Blas ◽  
J.J. Ríos Rámirez

We report results of the first principles calculations of structural, electronic and optical properties of SrF2 under pressure, performed using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory as implemented on WIEN2k code. The exchange-correlation energy functional has been treated with generalised gradient approximation (GGA) for structural optimization,while the Tran-Blaha modifed Becke-Johnson potential (TB-mBJ) has been employed for electronic and optical calculations. Our results show that the first transition from Fm3m to Pnam structure occurs at 5.8 GPa and the second transformation from Pnam to P63/mmc structure takes place at 24.8 GPa. Our electronic calculation indicates an indirect gap X-Γ of Fm3m structure, direct gap Γ-Γ of Pnam structure and indirect gap Γ-K of P63/mmc structure. We do not observe the metallization up to 210 GPa. The linear optical properties such as absorption coefficient, reflectivity, refraction index, conductivity and energy loss function have been derived from calculated complex dielectric function for a wide energy range of 0-50 eV and pressure up to 50 GPa, and analyzed in detail.

2020 ◽  
Author(s):  
Messaoud Caid

An investigation into the structural, electronic and optical properties of superlattices(SLs) (ZnSe)n/(ZnTe)n was conducted using first principles calculations based on density functional theory (DFT). The total energies were calculated within the full-potential linear muffin-tin orbital (FP-LMTO) method augmented by a plane-wave basis (PLW), implemented in LmtART 7.0 code. The effects of the approximations to the exchange-correlation energy were treated by the local density approximation (LDA). The ground state properties of (ZnSe)n/(ZnTe)n binary compounds are determined and compared with the available data. It is found that the superlattice (n-n: 1-1, 2-2 and 3-3) band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(w), the refractive index n(w) and the reflectivity R(w), are calculated for radiation energies up to 35eV.


2014 ◽  
Vol 28 (17) ◽  
pp. 1450139 ◽  
Author(s):  
R. Taghavi Mendi ◽  
S. M. Elahi ◽  
M. R. Abolhassani

In this paper, the structural, electronic and optical properties of V -doped single-walled ZnO nanotube (8, 0) ( SWZnONT (8, 0)) were investigated by the first principles. The calculated formation energy shows that V -doped SWZnONT (8, 0) is more stable than pure SWZnONT (8, 0). Our results show that pure SWZnONT (8, 0) has a direct bandgap about 1.443 eV in Γ point. In the V -doped SWZnONT (8, 0), some bands in both spin down and up cross the Fermi level and the calculated total spin magnetic momentum was obtained about 2.345 μ B . So we expect that the V -doped SWZnONT (8, 0) exhibits magnetic and metallic behavior. These results are in agreement with other theoretical works. The optical properties such as dielectric function, energy loss function, optical conductivity, refractive index and reflectivity are calculated. Redshift, metallic behavior and anisotropic property were observed in the V -doped SWZnONT (8, 0). Our results suggest that the V -doped SWZnONT (8, 0) can be used in magneto-optical devices. The results showed that the reflectivity of pure and V -doped SWZnONT (8, 0) in the wide energy range is low, therefore, pure and V -doped SWZnONT (8, 0) can be used in transparent coating.


2012 ◽  
Vol 26 (17) ◽  
pp. 1250098 ◽  
Author(s):  
A. SAJID ◽  
S. M. ALAY-E-ABBAS ◽  
A. AFAQ ◽  
A. SHAUKAT

First principles total energy calculations have been performed using full potential linear augmented plane wave method (FP-LAPW) within density functional theory to study the structural, electronic and optical properties of MgS x Se 1-x, MgS x Te 1-x and MgSe x Te 1-x alloys in the rock salt crystallographic phase. The generalized gradient approximation parameterization scheme has been used for calculating the ground state structural parameters and their deviation from the Vegard's law has been discussed. Full relativistic electronic band structures and density of states have been calculated to study the electronic properties of the end binary compounds and ternary alloys MgS x Se 1-x, MgS x Te 1-x and MgSe x Te 1-x (0.25 < x < 0.75). Optical bowing for these semiconductor alloys has been discussed in term of volume deformation, electronegativity and structural relaxation. Optical properties of the binary and ternary magnesium chalcogenides have been calculated in terms of the complex dielectric function and the results are compared with available theoretical and experimental data.


2020 ◽  
Vol 38 (2) ◽  
pp. 320-327
Author(s):  
M. Caid ◽  
D. Rached

AbstractThe structural, electronic and optical properties of (AlSb)m/(GaSb)n (m-n: 1-1, 2-2, 1-3 and 3-1) superlattices are investigated within the density functional theory (DFT) by using the last version of the first principles full potential linear muffin tin orbital method (FP-LMTO) as implemented in LmtART 7.0 code. The exchange and correlation potential is treated by the local density approximation (LDA) for the total energy calculations. Our calculations of the band structure show that the superlattices (n ≠ 1) have a direct band gap Γ-Γ. The optical constants, including the dielectric function ϵ(w), the refractive index n(w) and the reflectivity R(w) are calculated and discussed.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850337
Author(s):  
Shahid Ullah ◽  
Hayat Ullah ◽  
Abdullah Yar ◽  
Sikander Azam ◽  
A. Laref

In this paper, we study the optoelectronic properties of quaternary metal chalcogenide semiconductor ABaMQ4 (A = Rb, Cs; M = P, V; and Q = S) compounds using state-of-the-art density functional theory (DFT) with TB-mBJ approximation for the treatment of exchange-correlation energy. In particular, the electronic and optical properties of the relaxed geometries of these compounds are investigated. Our first-principles ab-initio calculations show that the CsBaPS4 and RbBaPS4 compounds have direct bandgaps whereas the CsBaVS4 compound exhibits indirect bandgap nature. Importantly, the theoretically calculated values of the bandgaps of the compounds are consistent with experiment. Furthermore, our analysis of the electronic charge densities of these compounds indicates that the above quaternary chalcogenides have mixed covalent and ionic bonding characters. The effective masses of these compounds are also calculated which provide very useful information about the band structure and transport characteristics of the investigated compounds. Similarly, high absorptivity in the visible and ultraviolet regions of the electromagnetic spectrum possibly predicts and indicates the importance of these materials for potential optoelectronic applications in this range.


2015 ◽  
Vol 29 (20) ◽  
pp. 1550103
Author(s):  
Jinhui Zhai ◽  
Jinguang Zhai ◽  
Ajun Wan

The electronic and optical properties of zinc-blende (zb)[Formula: see text]GeC have been investigated using first principles calculations based on the density functional theory (DFT). The obtained band gap of zb–GeC is 2.30[Formula: see text]eV by means of Heyd–Scuseria–Ernzerhof (HSE) functional. We have discussed the energy-dependent optical functions including dielectric constants, refractive index, absorption, reflectivity, and energy-loss spectrum in detail. The results reveal that zb–GeC has a higher static dielectric constant compared with that of zb–SiC. The optical functions are mainly associated with the interband transitions from the occupied valence bands (VBs) Ge[Formula: see text][Formula: see text] and C[Formula: see text][Formula: see text] states to Ge[Formula: see text][Formula: see text], [Formula: see text] and C[Formula: see text][Formula: see text] states of the unoccupied conduction bands (CBs).


2016 ◽  
Vol 257 ◽  
pp. 123-126 ◽  
Author(s):  
Salima Labidi ◽  
Jazia Zeroual ◽  
Malika Labidi ◽  
Kalthoum Klaa ◽  
Rachid Bensalem

First-principles calculations for electronic and optical properties under pressure effect of MgO, SrO and CaO compounds in the cubic structure, using a full relativistic version of the full-potential augmented plane-wave (FP-LAPW) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA), have been reported. Furthermore, band structure calculations have been investigated by the alternative form of GGA proposed by Engel and Vosko (GGA-EV) and modified by Becke-Johnson exchange correlation potential (MBJ-GGA). All calculated equilibrium lattices, bulk modulus and band gap at zero pressure are find in good agreement with the available reported data. The pressure dependence of band gap and the static optical dielectric constant are also investigated in this work.


Sign in / Sign up

Export Citation Format

Share Document