Testing and Refining Scholarly Communications Workflows and Work Habits for the Digital Age

2021 ◽  
Vol 52 (4) ◽  
pp. 233-247
Author(s):  
Clarissa J. Ceglio ◽  
Tom Scheinfeldt ◽  
Sara Sikes

Greenhouse Studios | Scholarly Communications Design at UConn is a shared venture of the School of Fine Arts, University Library, and College of Liberal Arts and Sciences at the University of Connecticut. Greenhouse Studios’ core research mission is the development of workflows that bring diverse interdisciplinary teams together to create works of digital and non-traditional scholarship while also cultivating a collaborative work culture. This article summarizes the implementation, assessment, and refinement of those workflows, which together constitute Greenhouse Studios’ design-based, inquiry-driven, collaboration-first model of scholarly production. Findings from this research, undertaken with support from the Andrew W. Mellon Foundation, include modifications to Greenhouse Studios’ operations, specifically to the terminology used in its design-process model, the composition of team personnel, approaches to project management, tactics to foster divergent thinking, and our relationships to press partners.

2020 ◽  
Vol 15 ◽  
Author(s):  
Jin Li ◽  
Xingsheng Jiang ◽  
Jingye Li ◽  
Yadong Zhao ◽  
Xuexing Li

Background: In the whole design process of modular fuel tank, there are some unreasonable phenomena. As a result, there are some defects in the design of modular fuel tank, and the function does not meet the requirements in advance. This paper studies this problem. Objective: Through on-the-spot investigation of the factory, a mechanical design process model is designed. The model can provide reference for product design participants on product design time and design quality, and can effectively solve the problem of low product design quality caused by unreasonable product design time arrangement. Methods: After sorting out the data from the factory investigation, computer software is used to program, simulate the information input of mechanical design process, and the final reference value is got. Results: This mechanical design process model is used to guide the design and production of a new project, nearly 3 months ahead of the original project completion time. Conclusion: This mechanical design process model can effectively guide the product design process, which is of great significance to the whole mechanical design field.


Author(s):  
B. Lu ◽  
P. Gu ◽  
S. Spiewak

Sustainable product development (SPD) requires that product design achieve minimal or zero environmental impact, while satisfying other design criteria such as functionality, quality, desirable features, and acceptable cost and time to market. Therefore, environmental evaluations must be incorporated into the design stage. This research is aimed at the development of a new approach to lifecycle design and evaluation. This paper proposes a framework to optimize functional, environmental, and economic (FEE) performance towards sustainable design. Based on the three dimensions of FEE, a systematic lifecycle design process model is proposed, which consists of: the three FEE requirements; two design objects (physical structure and lifecycle structure); and, the FEE evaluation streams of LCQ (functional lifecycle quality), LCA (environmental lifecycle assessment) and LCC (economic lifecycle costing). A new concept, called process-based analysis (PBA) is defined, and used as the base for FEE evaluations.


Author(s):  
Marierose Van Dooren ◽  
Valentijn Visch ◽  
Renske Spijkerman ◽  
Richard Goossens ◽  
Vincent Hendriks

Personalization, the involvement of stakeholders in the design process, is often applied in serious game design for health. It is expected to enhance the alignment of a game to the preferences and capacities of the end-user, thereby increasing the end-user’s motivation to interact with the game, which finally might enhance the aimed-for health effects of the game. However, the nature and effect of personalization have never been systematically studied, making assumptions regarding personalization ungrounded. In this literature review, we firstly provide a proposal of our Personalized Design Process-model, where personalization is defined as stakeholder involvement in the Problem Definition-, Product Design- and/or Tailoring Phase. Secondly, we conducted a systematic literature review on this model, focusing on health and its effects. In this review, 62 of the 2579 found studies were included. Analysis showed that a minority of the studies were of methodologically higher quality and some of these tested the health effect by contrasting tailored versus non-tailored games. Most studies involved stakeholders in the Tailoring Design Phase. Therefore, we conclude that involving stakeholders in the Tailoring Phase is valuable. However, to know if personalization is effective in the Product Design- and the Problem Definition Phase, more studies are needed.


Author(s):  
Tetsuo Tomiyama

Abstract This paper proposes a new design process model that unifies theoretical results of General Design Theory (GDT) and empirical findings obtained from design experiments. It first reviews the design process models that were developed within theoretical work on GDT. Then, we describe experimental work on design based on protocol analysis, which resulted in a cognitive design process model from which further a computable design process model was derived. While these experimental results are supposed to support the theoretical conclusions obtained from GDT, we could also find out incompatibilities. We then propose a new design process model, called the refinement design process model, that can unify both theoretical results of GDT and experimental finding obtained from design experiments. The refinement model has better agreements with experimental findings and suggests various issues as a guiding principle to develop a future, advanced CAD system that helps a designer to focus on functional information. We propose and illustrate the concepts of such an advanced CAD system equipped with intensive design knowledge, called a computational framework for knowledge intensive engineering.


Author(s):  
Kim A. Hosler

The purpose of this chapter is to present and discuss the instructional design process model -- ADDIE, and nine flipped course design principles, which when used in parallel, offer a means to support the development and implementation of a hybrid or flipped classroom. Discussion of the pedagogical terms hybrid, blended, flipped classrooms, and active learning, are followed by an overview of the instructional design process model ADDIE, along with evidenced-based flipped classroom design principles. A partial example of how these two frameworks may be applied to the re-design of a fully online course into a flipped or hybrid course is demonstrated, and emergent design-consideration questions are offered.


Sign in / Sign up

Export Citation Format

Share Document