A Design Process Model That Unifies General Design Theory and Empirical Findings

Author(s):  
Tetsuo Tomiyama

Abstract This paper proposes a new design process model that unifies theoretical results of General Design Theory (GDT) and empirical findings obtained from design experiments. It first reviews the design process models that were developed within theoretical work on GDT. Then, we describe experimental work on design based on protocol analysis, which resulted in a cognitive design process model from which further a computable design process model was derived. While these experimental results are supposed to support the theoretical conclusions obtained from GDT, we could also find out incompatibilities. We then propose a new design process model, called the refinement design process model, that can unify both theoretical results of GDT and experimental finding obtained from design experiments. The refinement model has better agreements with experimental findings and suggests various issues as a guiding principle to develop a future, advanced CAD system that helps a designer to focus on functional information. We propose and illustrate the concepts of such an advanced CAD system equipped with intensive design knowledge, called a computational framework for knowledge intensive engineering.

Author(s):  
M Cross ◽  
S Sivaloganathan

A number of design models have been proposed by design researchers, but they have not been adopted by industry because they are too generic. To be successful, companies have to manage effectively both project risk and concurrent development. The stage gate model is a suitable mechanism to achieve the required control within a commercial environment and there is evidence of its adoption by industry. The number of stages used depends on the degree of risk and the control needed in the project. Design methods are techniques that can assist designers to develop new products and knowledge can be classified as basic or specialist. This paper summarizes 100 key design methods from basic knowledge and suggests when they should be used. There are also company-specific design methods, which fall in the specialist knowledge category. An effective commercial design model should incorporate, firstly, a stage gate process that has stages defined to suit the project risk and to provide the control needed, secondly, the required level of concurrency, thirdly, appropriate basic design methods in the different stages, and, fourthly, appropriate specialist design methods in the different stages. This paper proposes a six-stepped methodology for developing such a company-specific design process model.


Author(s):  
Tetsuo Tomiyama

AbstractContributions of general design theory (GDT) proposed by Yoshikawa for the development of advanced CAD (computer-aided design) and for innovative design from the research results of a group at the University of Tokyo are illustrated. First, the GDT that formalizes design knowledge based on axiomatic set theory is reviewed. Second, this theoretical result is tested against experimental work on design processes. Although in principle the theoretical results agree with the experimental findings, some problems can be pointed out. From these problems a new design process model, called the refinement model, is established, which has better agreement with the experimental findings. This model implies three guiding principles in developing a future CAD system. One is that future CAD requires a mechanism for physics-centered modeling and multiple model management. Second, a mechanism for function modeling is also required, and the FBS (function-behavior-state) modeling is proposed. Third, intention modeling is also proposed for recording decision-making processes in design. These advanced modeling techniques enable creative, innovative designs. As an example, the design of self-maintenance machines is illustrated. This design example utilizes design knowledge intensively on a knowledge-intensive CAD. This is a new way of engineering and can be called knowledge-intensive engineering. The design of self-maintenance machines is, therefore, an example of knowledge-intensive design of knowledge-intensive products, which demonstrates the power of the design methodology derived from the GDT.


2019 ◽  
Vol 31 (1) ◽  
pp. 83-102
Author(s):  
Martin Stacey ◽  
Claudia Eckert ◽  
Rafaela Hillerbrand

Abstract Design process models have a complex and changing relationship to the processes they model, and mean different things to different people in different situations. Participants in design processes need to understand each other’s perspectives and agree on what the models mean. The paper draws on philosophy of science to argue that understanding a design process model can be seen as an imagination game governed by agreed rules, to envisage what would be true about the world if the model were correct. The rules depend on the syntax and content of the model, on the task the model is used for, and on what the users see the model as being. The paper outlines twelve alternative conceptualizations of design process models—frames, pathways, positions, proclamations, projections, predictions, propositions, prophecies, requests, demands, proposals, promises—and discusses when they fit situations that stakeholders in design processes can be in. Articulating how process models are conceptualised can both help to understand how process management works and help to resolve communication problems in industrial practice.


2020 ◽  
Vol 15 ◽  
Author(s):  
Jin Li ◽  
Xingsheng Jiang ◽  
Jingye Li ◽  
Yadong Zhao ◽  
Xuexing Li

Background: In the whole design process of modular fuel tank, there are some unreasonable phenomena. As a result, there are some defects in the design of modular fuel tank, and the function does not meet the requirements in advance. This paper studies this problem. Objective: Through on-the-spot investigation of the factory, a mechanical design process model is designed. The model can provide reference for product design participants on product design time and design quality, and can effectively solve the problem of low product design quality caused by unreasonable product design time arrangement. Methods: After sorting out the data from the factory investigation, computer software is used to program, simulate the information input of mechanical design process, and the final reference value is got. Results: This mechanical design process model is used to guide the design and production of a new project, nearly 3 months ahead of the original project completion time. Conclusion: This mechanical design process model can effectively guide the product design process, which is of great significance to the whole mechanical design field.


Author(s):  
Marierose Van Dooren ◽  
Valentijn Visch ◽  
Renske Spijkerman ◽  
Richard Goossens ◽  
Vincent Hendriks

Personalization, the involvement of stakeholders in the design process, is often applied in serious game design for health. It is expected to enhance the alignment of a game to the preferences and capacities of the end-user, thereby increasing the end-user’s motivation to interact with the game, which finally might enhance the aimed-for health effects of the game. However, the nature and effect of personalization have never been systematically studied, making assumptions regarding personalization ungrounded. In this literature review, we firstly provide a proposal of our Personalized Design Process-model, where personalization is defined as stakeholder involvement in the Problem Definition-, Product Design- and/or Tailoring Phase. Secondly, we conducted a systematic literature review on this model, focusing on health and its effects. In this review, 62 of the 2579 found studies were included. Analysis showed that a minority of the studies were of methodologically higher quality and some of these tested the health effect by contrasting tailored versus non-tailored games. Most studies involved stakeholders in the Tailoring Design Phase. Therefore, we conclude that involving stakeholders in the Tailoring Phase is valuable. However, to know if personalization is effective in the Product Design- and the Problem Definition Phase, more studies are needed.


Author(s):  
Kim A. Hosler

The purpose of this chapter is to present and discuss the instructional design process model -- ADDIE, and nine flipped course design principles, which when used in parallel, offer a means to support the development and implementation of a hybrid or flipped classroom. Discussion of the pedagogical terms hybrid, blended, flipped classrooms, and active learning, are followed by an overview of the instructional design process model ADDIE, along with evidenced-based flipped classroom design principles. A partial example of how these two frameworks may be applied to the re-design of a fully online course into a flipped or hybrid course is demonstrated, and emergent design-consideration questions are offered.


Sign in / Sign up

Export Citation Format

Share Document