The Effect of Aging and Sliding Speed on Wear Behaviour of Cu-Cr-Zr Alloy

2013 ◽  
Vol 55 (6) ◽  
pp. 468-471 ◽  
Author(s):  
Dursun Özyürek ◽  
Ibrahim Ciftci ◽  
Tansel Tuncay
2017 ◽  
Vol 315 ◽  
pp. 519-529 ◽  
Author(s):  
N. Hashemi ◽  
A. Mertens ◽  
H.-M. Montrieux ◽  
J.T. Tchuindjang ◽  
O. Dedry ◽  
...  

2017 ◽  
Vol 69 (2) ◽  
pp. 241-247 ◽  
Author(s):  
H. Siddhi Jailani ◽  
A. Rajadurai ◽  
B. Mohan ◽  
T. Sornakumar

Purpose Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique. Design/methodology/approach Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m. Findings The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy. Practical implications The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained. Originality/value There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.


2011 ◽  
Vol 194-196 ◽  
pp. 1572-1576
Author(s):  
Yong Li ◽  
Dan Qing Yi ◽  
Rui Qing Liu ◽  
Shun Ping Sun

A deformation-processed Cu-10Fe-3Ag in situ composite was made by consumable arc melting and casting followed by extensive deformation. A superior combination of mechanical strength and electrical/thermal conductivity was achieved with the composite since Fe filaments existed in the copper matrix. The effects of sliding speed and electrical current on sliding wear behavior and microstructure of the composite were investigated on wear tester. Worn surfaces of the Cu-10Fe-3Ag in situ composite were analyzed by scanning electron microscopy (SEM). Within the studied range of electrical current and sliding speed, the wear rate increased with the increasing electrical current and the sliding speed. Compared with Cu-10Fe in situ composite under the same conditions, the Cu-10Fe-3Ag in situ composite had much better wear resistance. Adhesive wear, abrasive wear and arc erosion were the dominant mechanisms during the electrical sliding processes.


Author(s):  
Pawandeep Singh ◽  
R.K. Mishra ◽  
Balbir Singh

Abstract This study aims to investigate the tribological behaviour of lamb bone ash (LBA) and boron carbide (B4C) reinforced ZA-27 hybrid metal matrix composites fabricated using a stir casting process. The weight percentage of LBA and B4C particles in the composites were varied from 0-5 wt.%. The composites have been evaluated for density, porosity and microhardness before tribological testing. Dry sliding friction and wear behaviour of composites were studied on a pin-on-disc tribometer by varying load from 10-50 N at a fixed sliding speed of 1 m/s. Also, to investigate the effect of sliding speed on friction and wear behaviour of composites, tests were carried out at 2 m/s and 3 m/s of sliding speed. A scanning electron microscope (SEM) was used for examining the microstructure and worn surface morphology of composite samples. SEM micrographs revealed the presence and homogeneous distribution of reinforcement particles, and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of LBA and B4C particles in the composites. Composites density decreased, and porosity increased with the addition of reinforcement particles. The microhardness of the 5 wt.% reinforced LBA composite improved by 18.38%, whereas hybrid composite containing (2.5 wt.% LBA + 2.5 wt.% B4C) showed an improvement of 42% compared to the base alloy. The coefficient of friction (COF) and wear loss increased with the increase in load, whereas COF decreased and wear loss increased with the increase in sliding speed. Composites showed superior wear resistance even at higher loads and sliding speeds. SEM micrographs of worn surface revealed adhesion and abrasion type of wear mechanisms. Therefore, with the improvement in wear resistance this developed composite can be used as a bearing material over monolithic ZA-27 alloy in the automotive sector.


Wear ◽  
2007 ◽  
Vol 262 (7-8) ◽  
pp. 1007-1012 ◽  
Author(s):  
S. Basavarajappa ◽  
G. Chandramohan ◽  
Arjun Mahadevan ◽  
Mukundan Thangavelu ◽  
R. Subramanian ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. R. Chauhan ◽  
Kali Dass

The dry sliding wear behaviour of titanium (Grade 5) alloy has been investigated in order to highlight the mechanisms responsible for the poor wear resistance under different applied normal load, sliding speed, and sliding distance conditions. Design of experimental technique, that is, response surface methodology (RSM), has been used to accomplish the objective of the experimental study. The experimental plan for three factors at three levels using face-centre central composite design (CCD) has been employed. The results indicated that the specific wear rate increases with an increase in the applied normal load and sliding speed. However, it decreases with an increase in the sliding distance and a decrease in the sliding speed. The worn surfaces of the titanium alloy specimens were analyzed with the help of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques. The predicted result also shows the close agreement with the experimental results and hence the developed models could be used for prediction of wear behaviour satisfactorily.


Wear ◽  
1997 ◽  
Vol 206 (1-2) ◽  
pp. 33-38 ◽  
Author(s):  
A Ravikiran ◽  
M.K Surappa
Keyword(s):  

Wear ◽  
1998 ◽  
Vol 217 (1) ◽  
pp. 147-154 ◽  
Author(s):  
L.C. Betancourt-Dougherty ◽  
R.W. Smith

Sign in / Sign up

Export Citation Format

Share Document