Effects of load and sliding speed on the wear behaviour of plasma sprayed TiCNiCrBSi coatings

Wear ◽  
1998 ◽  
Vol 217 (1) ◽  
pp. 147-154 ◽  
Author(s):  
L.C. Betancourt-Dougherty ◽  
R.W. Smith
Wear ◽  
2001 ◽  
Vol 251 (1-12) ◽  
pp. 1017-1022 ◽  
Author(s):  
A. Martı́n ◽  
J. Rodrı́guez ◽  
J.E. Fernández ◽  
R. Vijande

2013 ◽  
Vol 55 (6) ◽  
pp. 468-471 ◽  
Author(s):  
Dursun Özyürek ◽  
Ibrahim Ciftci ◽  
Tansel Tuncay

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 170
Author(s):  
Songqiang Huang ◽  
Jingzhong Zhou ◽  
Kuoteng Sun ◽  
Hailiang Yang ◽  
Weichen Cai ◽  
...  

Nickel-based alloys are commonly used as protective coating materials for surface protection applications owing to their superior resistance to corrosion, wear and high-temperature oxidation. It is urgent to study the fundamental mechanism between the structure and corrosion properties of the Nickel-base composite coatings. This paper, therefore, focuses on clarifying the mechanisms of the microstructure influencing the acid corrosion and mechanical characteristics of the as-sprayed NiCrBSi coating and post-heat-treated coating. The formation mechanisms of the amorphous phase of flat particles during the plasma spray process were studied by using X-ray diffraction analysis, Raman spectroscopy and confocal laser scanning microscope at first. Then the evolutionary process of the corrosion structure and phase of the coating in the accelerated corrosion experiment is directly visualized by using scanning electron microscopy and energy spectrum analysis. The mechanical properties of the amorphous NiCrBSi coatings are lastly measured by microhardness and friction wear tests. The critical phenomena and results help to elucidate the relative influence of the surface features of atmospheric plasma sprayed coatings on acid corrosion responses and wear resistance, aiming at contributing to the development of a protective technique for electrical engineering.


2017 ◽  
Vol 315 ◽  
pp. 519-529 ◽  
Author(s):  
N. Hashemi ◽  
A. Mertens ◽  
H.-M. Montrieux ◽  
J.T. Tchuindjang ◽  
O. Dedry ◽  
...  

2017 ◽  
Vol 69 (2) ◽  
pp. 241-247 ◽  
Author(s):  
H. Siddhi Jailani ◽  
A. Rajadurai ◽  
B. Mohan ◽  
T. Sornakumar

Purpose Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique. Design/methodology/approach Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m. Findings The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy. Practical implications The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained. Originality/value There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.


2011 ◽  
Vol 194-196 ◽  
pp. 1572-1576
Author(s):  
Yong Li ◽  
Dan Qing Yi ◽  
Rui Qing Liu ◽  
Shun Ping Sun

A deformation-processed Cu-10Fe-3Ag in situ composite was made by consumable arc melting and casting followed by extensive deformation. A superior combination of mechanical strength and electrical/thermal conductivity was achieved with the composite since Fe filaments existed in the copper matrix. The effects of sliding speed and electrical current on sliding wear behavior and microstructure of the composite were investigated on wear tester. Worn surfaces of the Cu-10Fe-3Ag in situ composite were analyzed by scanning electron microscopy (SEM). Within the studied range of electrical current and sliding speed, the wear rate increased with the increasing electrical current and the sliding speed. Compared with Cu-10Fe in situ composite under the same conditions, the Cu-10Fe-3Ag in situ composite had much better wear resistance. Adhesive wear, abrasive wear and arc erosion were the dominant mechanisms during the electrical sliding processes.


2007 ◽  
Vol 28 (7) ◽  
pp. 2177-2183 ◽  
Author(s):  
Ozkan Sarikaya ◽  
Selahaddin Anik ◽  
Erdal Celik ◽  
S. Cem Okumus ◽  
Salim Aslanlar

Sadhana ◽  
2017 ◽  
Vol 42 (10) ◽  
pp. 1763-1772 ◽  
Author(s):  
Balmukund Dhakar ◽  
Satyajit Chatterjee ◽  
Kazi Sabiruddin

Sign in / Sign up

Export Citation Format

Share Document