Effective hydrogen diffusivities of AISI 304 stainless steel with Ni or Au coating

2020 ◽  
Vol 62 (6) ◽  
pp. 593-596
Author(s):  
Krittayot Wannapoklang ◽  
Sirichai Leelachao ◽  
Anchaleeporn W. Lothongkum ◽  
Gobboon Lothongkum
2020 ◽  
Vol 62 (6) ◽  
pp. 593-596
Author(s):  
Krittayot Wannapoklang ◽  
Sirichai Leelachao ◽  
Anchaleeporn W. Lothongkum ◽  
Gobboon Lothongkum

AbstractMetallic coatings which provide a hydrogen diffusion barrier are thought to reduce hydrogen assisted cracking on stainless steel. The influence of a metallic layer on the hydrogen migration of AISI 304 stainless steel was investigated using a commercial electroplating layer of Ni and Au on a thin stainless steel coupon. Phase identification was performed using an X-ray diffractometer to determine the average thicknesses, measured from back-scattered scanning electron images. Regarding the ASTM G148-97 practice, the effective hydrogen diffusivities of AISI 304 austenitic stainless steel, nickel and gold were measured as 7.07 × 10-13, 2.72 × 10-14 and 9.64 × 10-16 m2 × s-1, respectively. In this work, a gold layer was found to be most effective for the prevention of hydrogen diffusion when compared with untreated and Ni-plated 304 stainless steel.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Rafael dos Santos Pereira ◽  
Roosevelt Droppa ◽  
Mara Cristina Lopes de Oliveira ◽  
Renato Altobelli Antunes

Sign in / Sign up

Export Citation Format

Share Document