Joint strength optimization and morphological analysis for friction stir spot welding of the dissimilar thermoplastics ABS and PC

2020 ◽  
Vol 62 (11) ◽  
pp. 1109-1117
Author(s):  
Aydın Ülker ◽  
Asil Ayaz
2007 ◽  
Vol 344 ◽  
pp. 767-774 ◽  
Author(s):  
Gianluca Buffa ◽  
Livan Fratini ◽  
Mario Piacentini

In the paper, a variation of the Friction Stir Spot Welding (FSSW) process has been considered. In particular, a particular tool path is given after the sinking phase nearby the initial penetration site. The process mechanics was highlighted and the joint strength was considered at the varying of the most relevant process parameters. Furthermore macro and micro analyses were developed in order to highlight the process mechanics and the local material microstructure evolution. The investigated technology appears a promising joining technique in order to develop effective spot joints.


2020 ◽  
pp. 009524432096152
Author(s):  
Asil Ayaz ◽  
Aydin Ülker

In this study, a new method was proposed to reduce the keyhole volume with friction stir spot welding process and improve the lap joint shear load-carrying capacity of the weld by analyzing the effects of tool rotation speed, plunge depth and dwell time on the weld. Single lap shear tests were carried out to determine the influences of the welding parameters on the mechanical behavior of the welds. The quality of the joint was evaluated by examining the characteristics of the joint as a result of the lap joint shear load. For friction stir spot welding of the acrylonitrile butadiene styrene samples, the experiments were designed according to Taguchi’s L9 orthogonal array in a randomized way. From the analysis of variance and the signal-to-noise ratio, the significant parameters and the optimum combination level of the parameters were obtained. It was found that using a tool rotation of 1000 rpm, plunge depth 11.5 mm and dwell time of 40 s, an improved joint strength can be obtained. The results showed that joint strength was improved by an amount of 20% as compared with the optimum welding parameters to the initial welding parameters. Macrostructure examination plays an important role to determine the joint strength and evaluate the influences of each welding parameters. So, weld morphology was investigated by morphological analysis and visual comparisons. It was also observed failure modes for fractured samples having the highest, moderate and lowest lap joint shear load.


Author(s):  
L Fratini ◽  
A Barcellona ◽  
G Buffa ◽  
D Palmeri

The results of an experimental study on friction stir spot welding (FSSW) of AA6082-T6 are reported. In particular, process mechanics is highlighted and joint strength is considered in relation to varying the most relevant process parameters. Furthermore, the results obtained are compared with those derived from the application of traditional mechanical fastening techniques such as clinching and riveting. In this way the effectiveness of FSSW is highlighted.


2011 ◽  
Vol 16 (7) ◽  
pp. 642-647 ◽  
Author(s):  
M P Miles ◽  
C S Ridges ◽  
Y Hovanski ◽  
J Peterson ◽  
M L Santella ◽  
...  

2019 ◽  
Vol 38 (2019) ◽  
pp. 69-75 ◽  
Author(s):  
Zhenlei Liu ◽  
Kang Yang ◽  
Dejun Yan

AbstractRefill friction stir spot welding (RFSSW) was used to join 6061-T6 and 7075-T6 aluminum alloys in this work. Different sheet configurations and welding parameters were used to optimize joint strength. The effect of sleeve plunge depth on the microstructure and mechanical properties of the joints were investigated. The results showed that no defects were obtained when 6061-T6 aluminum alloy was placed as the upper sheet. The lap shear failure load of the joint using 6061-T6 aluminum alloy as the upper sheet was higher than that using 7075-T6 as the upper sheet. The maximum failure load of 12,892 N was attained when using the sleeve plunge depth of 3.6 mm. The joint failed at the upward flowing 7075 near the hook.


2020 ◽  
Vol 62 (11) ◽  
pp. 1109-1117
Author(s):  
Aydın Ülker ◽  
Asil Ayaz

Abstract The present study aims to investigate the feasibility of friction stir spot welding two dissimilar polymers, acrylonitrile butadiene styrene and polycarbonate. Welding parameters are effective on lap joint shear load. This study also investigated the influences of welding parameters such as rotational speed, plunge depth, and dwell time on the joint morphology and mechanical characterization. In addition, a common problem in friction stir spot welding is the forming of characteristic keyholes in the joint,s a problem that has an important effect on mechanical test results. For this reason, a polycarbonate filler sheet was used to improve the lap joint shear load by reducing the size of the keyhole in this study. The quality of the welded specimens was examined after lap joint shear tests. Experiments were carried out according to Taguchi L9 orthogonal array using a randomized approach for arranging optimum welding parameters. Signal-to-noise ratio and the analysis of variance were used to determine the influences of each process parameter on the lap joint shear load. Results indicated that the friction stir spot welding of acrylonitrile butadiene styrene with polycarbonate is feasible and welding parameters significantly affected joint quality. From the experiments, a 57 % improvement was achieved in the lap joint shear load from the initial welding parameters to the optimal welding parameters. Furthermore, weld morphology was investigated by morphological analysis and visual comparisons. Finally, the failure modes of the fractured samples were observed and classified for highest, moderate, and lowest lap joint shear loads.


Sign in / Sign up

Export Citation Format

Share Document