Tool Path Design in Friction Stir Spot Welding of AA6082-T6 Aluminum Alloys

2007 ◽  
Vol 344 ◽  
pp. 767-774 ◽  
Author(s):  
Gianluca Buffa ◽  
Livan Fratini ◽  
Mario Piacentini

In the paper, a variation of the Friction Stir Spot Welding (FSSW) process has been considered. In particular, a particular tool path is given after the sinking phase nearby the initial penetration site. The process mechanics was highlighted and the joint strength was considered at the varying of the most relevant process parameters. Furthermore macro and micro analyses were developed in order to highlight the process mechanics and the local material microstructure evolution. The investigated technology appears a promising joining technique in order to develop effective spot joints.

Author(s):  
L Fratini ◽  
A Barcellona ◽  
G Buffa ◽  
D Palmeri

The results of an experimental study on friction stir spot welding (FSSW) of AA6082-T6 are reported. In particular, process mechanics is highlighted and joint strength is considered in relation to varying the most relevant process parameters. Furthermore, the results obtained are compared with those derived from the application of traditional mechanical fastening techniques such as clinching and riveting. In this way the effectiveness of FSSW is highlighted.


2020 ◽  
pp. 009524432096152
Author(s):  
Asil Ayaz ◽  
Aydin Ülker

In this study, a new method was proposed to reduce the keyhole volume with friction stir spot welding process and improve the lap joint shear load-carrying capacity of the weld by analyzing the effects of tool rotation speed, plunge depth and dwell time on the weld. Single lap shear tests were carried out to determine the influences of the welding parameters on the mechanical behavior of the welds. The quality of the joint was evaluated by examining the characteristics of the joint as a result of the lap joint shear load. For friction stir spot welding of the acrylonitrile butadiene styrene samples, the experiments were designed according to Taguchi’s L9 orthogonal array in a randomized way. From the analysis of variance and the signal-to-noise ratio, the significant parameters and the optimum combination level of the parameters were obtained. It was found that using a tool rotation of 1000 rpm, plunge depth 11.5 mm and dwell time of 40 s, an improved joint strength can be obtained. The results showed that joint strength was improved by an amount of 20% as compared with the optimum welding parameters to the initial welding parameters. Macrostructure examination plays an important role to determine the joint strength and evaluate the influences of each welding parameters. So, weld morphology was investigated by morphological analysis and visual comparisons. It was also observed failure modes for fractured samples having the highest, moderate and lowest lap joint shear load.


2009 ◽  
Vol 83-86 ◽  
pp. 1220-1227
Author(s):  
Gianluca Buffa ◽  
Livan Fratini

Spot welding can be considered a very common joining technique in automotive and transportation industries as it permits to obtain effective lap-joints with short process times and what is more it is easily developed through robots and automated systems. Recently the Friction Stir Spot Welding (FSSW) process has been proposed as a natural evolution of the already known Friction Stir Welding (FSW) process, allowing to obtain sound spot joints that do not suffer from the insurgence of typical welding defects due to the fusion of the base material. In the paper, a modified Friction Stir Spot Welding (FSSW) process, with a spiral circular movement given to the tool after the sinking stage, is proposed. A continuum based numerical model for Friction Stir Spot Welding process is developed, that is 2D Lagrangian implicit, coupled, rigid-viscoplastic. This model is used to investigate the distribution of the main field variables, namely temperature, strain and strain rate, as well as the Zener-Hollomon parameter which, in turn, strongly affects the Continuous Dynamic Recrystallization (CDRX) process that takes place in the weld nugget. Numerical and experimental results are presented showing the effects of the process parameters on the joint performances and the mechanical effectiveness of the modified process.


2011 ◽  
Vol 16 (7) ◽  
pp. 642-647 ◽  
Author(s):  
M P Miles ◽  
C S Ridges ◽  
Y Hovanski ◽  
J Peterson ◽  
M L Santella ◽  
...  

2019 ◽  
Vol 38 (2019) ◽  
pp. 69-75 ◽  
Author(s):  
Zhenlei Liu ◽  
Kang Yang ◽  
Dejun Yan

AbstractRefill friction stir spot welding (RFSSW) was used to join 6061-T6 and 7075-T6 aluminum alloys in this work. Different sheet configurations and welding parameters were used to optimize joint strength. The effect of sleeve plunge depth on the microstructure and mechanical properties of the joints were investigated. The results showed that no defects were obtained when 6061-T6 aluminum alloy was placed as the upper sheet. The lap shear failure load of the joint using 6061-T6 aluminum alloy as the upper sheet was higher than that using 7075-T6 as the upper sheet. The maximum failure load of 12,892 N was attained when using the sleeve plunge depth of 3.6 mm. The joint failed at the upward flowing 7075 near the hook.


Sign in / Sign up

Export Citation Format

Share Document