Relating viscoelastic nanoindentation creep and load relaxation experiments

Author(s):  
Michelle L. Oyen
1990 ◽  
Vol 5 (10) ◽  
pp. 2100-2106 ◽  
Author(s):  
W. R. LaFontaine ◽  
B. Yost ◽  
R. D. Black ◽  
C-Y. Li

Indentation load relaxation (ILR) experiments with indentation depths in the submicron range are described. Under appropriate conditions, the ILR data are found to yield flow curves of the same shape as those based on conventional load relaxation data. Variations in flow properties as a function of depth in submicron metal films deposited on a hard substrate are detected by the experiments described.


1990 ◽  
Vol 188 ◽  
Author(s):  
W. R. LaFontaine ◽  
B. Yost ◽  
R. D. Black ◽  
Che-Yu Li

ABSTRACTIndentation load relaxation (ILR) experiments with indentation depths in the submicron range are described. The observed flow behavior of a 1μm thick A1-2%Si film deposited on a silicon substrate depended on the depth of penetration. For shallow penetration depths, the shape of the flow curves obtained from this sample are similar to those obtained from a conventional load relaxation test of a bulk specimen. For penetration depths close to the film/substrate interface, the influence of the substrate on the film's deformation behavior was observed.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
E. Dieudé-Fauvel ◽  
J.-C. Baudez ◽  
P. Coussot ◽  
H. Van Damme

In order to improve sewage sludge characterization for both dewatering and agricultural spreading, we have studied their electrical and rheological properties. On the one hand, electrical measurements give a picture of the microstructure of the material (charges, particles mobility), whereas on the other hand, rheological experiments describe its macrostructure (consistency). The interactions of the matter are the link between them. Our results showed that sludge becomes more conductive when its dry content (for a defined composition) or the temperature increases, and also during aging. In parallel its apparent viscosity increases with the dry content but decreases with the temperature or during aging. In each case a clear correlation was found between electrical and rheological parameters. This relationship clearly depends on sludge composition, and also on parameters such as the temperature, the observation frequency, the velocity range in the case of relaxation experiments. Finally, those types of experiments can be correlated to improve the comprehension of sludge structure and consistency characterization.


2012 ◽  
Vol 40 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Mikael Akke

Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein–ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions.


1998 ◽  
Vol 283 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Christian Renner ◽  
Roland Baumgartner ◽  
Angelika A Noegel ◽  
Tad A Holak

1971 ◽  
Vol 55 (2) ◽  
pp. 762-768 ◽  
Author(s):  
J. L. Hunter ◽  
J. M. Davenport ◽  
D. Sette

Sign in / Sign up

Export Citation Format

Share Document