Study of the effects produced by ultrasonic vibration on AISI 1045 steel surface: surface residual stress and surface 3D morphology

Author(s):  
Jintao Lai ◽  
Bangping Gu
2012 ◽  
Vol 566 ◽  
pp. 7-10 ◽  
Author(s):  
Meng Yang Qin ◽  
Bang Yan Ye ◽  
Bo Wu

This paper gives the details of turning experiments on AISI 1045 steel by using various cutting fluid and liquid nitrogen condition. Residual stress on machined surface is generated in rough machining and fine machining with different rounded cutting edge radius. The effects of cutting fluid and liquid nitrogen on residual stress state are obtained by compared with dry cutting. Experimental results show that cutting fluid and liquid nitrogen have influence on machined residual stressl and liquid nitrogen generates residual compressive stress in all specimens.


2019 ◽  
Vol 8 (2) ◽  
pp. 1462-1465 ◽  

The nature of residual stresses caused by machining processes has been relevant to the study of component performance for decades. The concept that cutting parameters affect the magnitude and nature of residual stress is well known. In order to reduce the residual stresses on a machined surface, it is important to identify the extent of the effect of cutting conditions. This paper presents the effect of depth of cut and tool speed on milling induced residual stresses. Speed and depth of cut were varied when milling several AISI 1045 Steel specimens. Stresses were measured with the X-ray diffraction method and corroborated with mathematical modelling on an FEA software. A relationship between tool speed and residual stress, and depth of cut and residual stress was thus obtained.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3580
Author(s):  
Pao-Chang Chiang ◽  
Chih-Wei Chen ◽  
Fa-Ta Tsai ◽  
Chung-Kwei Lin ◽  
Chien-Chon Chen

In this paper, we used two mass-produced industrial technologies, namely, thermal spraying and anodization methods, to enhance the surface characteristics of AISI 1045 medium carbon steel for use in special environments or products. The anodic film can effectively improve the surface properties of carbon steel. A sequence of treatments of the carbon steel substrate surface that consist of sandblasting, spraying the aluminum film, annealing, hot rolling, cleaning, grinding, and polishing can increase the quality of the anodized film. This paper proposes an anodization process for the surface of carbon steel to increase the corrosion resistance, hardness, color diversification, and electrical resistance. The resulting surface improves the hardness (from 170 HV to 524 HV), surface roughness (from 1.26 to 0.15 μm), coloring (from metal color to various colors), and corrosion resistance (from rusty to corrosion resistant). The electrochemical corrosion studies showed that the AISI 1045 steel surface with a hard anodized film had a lower corrosion current density of 10−5.9 A/cm2 and a higher impedance of 9000 ohm than those of naked AISI 1045 steel (10−4.2 A/cm2 and 150 ohm) in HCl gas.


Author(s):  
Guilherme Roberto dos Santos Biasibetti ◽  
Rafael Menezes Nunes ◽  
Luiz Carlos de Cesaro Cavaler ◽  
Guilherme Vieira Braga Lemos ◽  
Alexandre da Silva Rocha

The main objective of this work was to evaluate the influence of turning parameters on the generation of residual stresses in AISI 1045 steel bars. Therefore, effects of four main parameters as feed rate, cutting velocity, tool nose radius, and rake angle were analyzed. Residual stresses investigation through X-ray diffraction (XRD) was carried out at different depths (surface, 5, 10, 20, 50, and 75 μm). As the samples showed distinct roughness patterns with variable amplitude and shape, and based in a previous work, samples were classified in two main groups accordingly with surface finishing (regular and irregular). The current results showed that feed rate and cutting speed played the major influence on residual stress distributions. Moreover, the tool nose radius affected surface residual stresses, whereas the rake angle did not significantly change it. Finally, samples could be divided in two residual stress groups, showing a direct relation of surface finishing quality and residual stresses.


2019 ◽  
Vol 889 ◽  
pp. 10-16
Author(s):  
Vinh Phoi Nguyen ◽  
Thien Ngon Dang ◽  
Chi Cuong Le

Chromium plating is used widely in industry to enhance wear, abrasion resistance and to restore the dimensions of undersized parts. However, tensile residual stress always exists in chrome layer because of hydrogen embrittlement so it affect to mechanical properties of the chromium plating machine element, especially in fatigue strength. In this paper, effect of residual stress in chrome plating layer to fatigue strength was studied. The sample (AISI 1045 steel) was plated with 10 and 60 micrometers thicknesses and residual stress in chrome plating layer was determined by X-ray diffraction technique (Cu-Kα radiation). The results showed that chromium layer thicknesses go up, tensile residual stress decrease and microcrack density increase. Consequently, fatigue strength goes down when chromium layer thicknesses increase.


2017 ◽  
Vol 143 ◽  
pp. 1183-1190 ◽  
Author(s):  
Bang-ping Gu ◽  
Xiong Hu ◽  
Li Zhao ◽  
De-jun Kong ◽  
Zhen-sheng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document