Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)

Author(s):  
Mingya Zhang ◽  
Li Liu ◽  
Zhenyi Huang ◽  
Jinghui Li
2004 ◽  
Vol 449-452 ◽  
pp. 645-648
Author(s):  
Si Young Chang ◽  
Sang Woong Lee ◽  
Jin Chun Kim ◽  
Young Seok Kim ◽  
Dong Hyuk Shin

The commercial AZ31 and AZ61 Mg alloys were subjected to equal channel angular pressing (ECAP) after hot rolling at 673 K. The hot-rolled AZ31 alloy could be ECA pressed at 493 K. The 4 ECA pressed AZ31 alloy revealed the microstructure of dynamically recrystallized grains with a grain size in range of 1 to 10μm. Despite the dynamic recrystallization during ECAP at higher temperatures ( > 1/2 Tm), the yield stress and tensile strength of AZ31 and AZ61 alloys drastically increased after 1 pressing. The yield stress gradually decreased with increasing the number of pressings, which contrasts with the behavior of the ECA pressed Al and Fe alloys, while the tensile strength increased slightly. In particular, the alloys showed nearly 3 times higher elongation than as-annealed one after 4 ECAPs, without sacrificing the tensile strength. These tensile deformation characteristics were explained based on the observation of the deformed microstructure in the vicinit of fracture surface.


2006 ◽  
Vol 503-504 ◽  
pp. 823-828 ◽  
Author(s):  
Y. Choi ◽  
Nam Ihn Cho ◽  
Hyoung Seop Kim ◽  
Sun Ig Hong

Effect of equal-channel angular pressing (ECAP) on the corrosion and mechanical properties of Cu-35%Zn alloy were studied. Two types of feed direction were selected. One is parallel pass and the other is 180°degree rotated ECAP pass after each pass. Both ECAP passes made texture in each specimen in which shear band with 45 degree on transverse direction and twins exist. The specimen prepared by parallel ECAP pass has finer shear band. Relative amount of twins to shear band on the microstructure becomes decrease with number of ECAP pass. Microhardness increased from 75 Hv to 210 Hv by ECAP. The corrosion potential and rate of the ECAPed Cu-35%Zn alloys in aerated aqueous 1 M-H2SO4 solution were –92.3 mVSHE and 3.72x10-2 A/cm2 for route- A and –38.6 mVSHE and 5.08x10-2 A/cm2 for route-C, respectively. The corrosion potential and rate of depended on the feed direction and number of pass.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 841 ◽  
Author(s):  
Jingli Yan ◽  
Zijun Qin ◽  
Kai Yan

Equal-channel angular pressing (ECAP) was performed on a Mg (6 wt %) Zn alloy at temperatures from 160 to 240 °C and the microstructures and mechanical properties were studied using optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and an electronic universal testing machine. The results showed that ECAP was effective for grain refinement and a bi-modal grain structure formed at low temperatures, which was stable during ECAP from 160 to 200 °C. MgZn2 phase and Mg4Zn7 phase were generated during the ECAP process. The mechanical properties remarkably increased after two repetitions of ECAP. However, the strengths could not be further improved by increasing the plastic deformation, but decreased when ECAP was performed between 200 and 240 °C. The mechanical properties of the ECAP Mg-6Zn alloy was determined by a combination of grain refinement strengthening, precipitation hardening, and texture softening.


2014 ◽  
Vol 217-218 ◽  
pp. 381-388 ◽  
Author(s):  
Łukasz Rogal ◽  
Frank Czerwiński ◽  
Lidia Litynska-Dobrzyńska ◽  
Piotr Bobrowski ◽  
Anna Wierzbica-Miernik ◽  
...  

A combination of hot rolling and equal channel angular pressing (ECAP) was explored to generate globular microstructures in the Mg-3%Zn alloy after re-heating to the semisolid state. It was found that the single-step deformation of as-cast alloy via hot rolling at 350°C with a thickness reduction of 50% refined the alloy microstructure by creating deformation bands of the Mg (α) phase with a size of the order of tenths of micrometers. After re-heating to 630 °C, the microstructure transformed into spheroidal morphologies with an average globule size of 82 μm. An additional deformation of the hot-rolled alloy by the ECAP method at 250 °C further refined the alloy microstructure to sub-micrometer grains of lath and equiaxed shapes. After re-heating of this microstructure to 630 °C the average globule size reached 62 μm, which is roughly 25% smaller than that achieved for the hot-rolled precursor. The role of strain-induced melt activation (SIMA) techniques in generation of globular morphologies in Mg-based alloys after partial re-melting is discussed.


Sign in / Sign up

Export Citation Format

Share Document