The Deformation Characteristics of Pure Aluminum Processed by Equal-Channel Angular Pressing

Author(s):  
C. Xu ◽  
M. Furukawa ◽  
Z. Horita ◽  
T. G. Langdon
2019 ◽  
Vol 821 ◽  
pp. 244-249
Author(s):  
Qian Su ◽  
Jie Xu ◽  
Lei Shi ◽  
De Bin Shan ◽  
Bin Guo

Micro-embossing tests were performed on ultrafine-grained pure Al processed by equal-channel angular pressing (ECAP) with 100 μm width of female die at different deformation temperature ranging from 298 K to 523 K under a force of 5 kN. The filling height, surface topography and microstructure of the cross section were measured by confocal scanning laser microscopy (CSLM), scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), respectively. The effects of deformation temperature on formability of ultrafine-grained (UFG) pure Al during micro-embossing were analyzed. The results show that increase in deformation temperature can improve the formability of UFG pure Al on micro-embossing. Micro hot embossing of UFG pure aluminum is characterized by the rib sidewall, surface quality, and fully transferred patterns, which shows ultrafine-grained pure Al has potential application in micro-forming.


2004 ◽  
Vol 449-452 ◽  
pp. 645-648
Author(s):  
Si Young Chang ◽  
Sang Woong Lee ◽  
Jin Chun Kim ◽  
Young Seok Kim ◽  
Dong Hyuk Shin

The commercial AZ31 and AZ61 Mg alloys were subjected to equal channel angular pressing (ECAP) after hot rolling at 673 K. The hot-rolled AZ31 alloy could be ECA pressed at 493 K. The 4 ECA pressed AZ31 alloy revealed the microstructure of dynamically recrystallized grains with a grain size in range of 1 to 10μm. Despite the dynamic recrystallization during ECAP at higher temperatures ( > 1/2 Tm), the yield stress and tensile strength of AZ31 and AZ61 alloys drastically increased after 1 pressing. The yield stress gradually decreased with increasing the number of pressings, which contrasts with the behavior of the ECA pressed Al and Fe alloys, while the tensile strength increased slightly. In particular, the alloys showed nearly 3 times higher elongation than as-annealed one after 4 ECAPs, without sacrificing the tensile strength. These tensile deformation characteristics were explained based on the observation of the deformed microstructure in the vicinit of fracture surface.


Sign in / Sign up

Export Citation Format

Share Document