Characterization of a Resistive Path to a Gate Node Using Tunneling Current Measurements

Author(s):  
Clifford Howard ◽  
Sam Subramanian ◽  
Kent Erington ◽  
Randall Mulder ◽  
Yuk Tsang ◽  
...  

Abstract Advanced technologies with higher gate leakage due to oxide tunneling current enable detection of high resistance faults to gate nodes using a straight forward resistance measurement.

Author(s):  
Satish Kodali ◽  
Chen Zhe ◽  
Chong Khiam Oh

Abstract Nanoprobing is one of the key characterization techniques for soft defect localization in SRAM. DC transistor performance metrics could be used to identify the root cause of the fail mode. One such case report where nanoprobing was applied to a wafer impacted by significant SRAM yield loss is presented in this paper where standard FIB cross-section on hard fail sites and top down delayered inspection did not reveal any obvious defects. The authors performed nanoprobing DC characterization measurements followed by capacitance-voltage (CV) measurements. Two probe CV measurement was then performed between the gate and drain of the device with source and bulk floating. The authors identified valuable process marginality at the gate to lightly doped drain overlap region. Physical characterization on an inline split wafer identified residual deposits on the BL contacts potentially blocking the implant. Enhanced cleans for resist removal was implemented as a fix for the fail mode.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
N. Birbilis ◽  
S. Choudhary ◽  
J. R. Scully ◽  
M. L. Taheri

AbstractMetallic alloys are critical to essentially all advanced technologies and engineered systems. The well-documented impact of corrosion (and oxidation) of alloys, remains a significant industrial and economic challenge, year on year. Recent activity in the field of metallurgy has revealed a class of metallic alloys, termed multi principal element alloys (MPEAs) that present unique physical properties. Such MPEAs have in many instances also demonstrated a high resistance to corrosion – which may permit the broader use of MPEAs as corrosion resistant alloys (CRAs) in harsh environments. Herein, the progress in MPEA research to date, along with prospects and challenges, are concisely reviewed—with potential future lines of research elaborated.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1391-1400
Author(s):  
Florian Laible ◽  
Kai Braun ◽  
Otto Hauler ◽  
Martin Eberle ◽  
Dieter P. Kern ◽  
...  

AbstractMechanically controllable break junctions are one suitable approach to generate atomic point contacts and ultrasmall and controllable gaps between two metal contacts. For constant bias voltages, the tunneling current can be used as a ruler to evaluate the distance between the contacts in the sub-1-nm regime and with sub-Å precision. This ruler can be used to measure the distance between two plasmonic nanostructures located at the designated breaking point of the break junction. In this work, an experimental setup together with suitable nanofabricated break junctions is developed that enables us to perform simultaneous gap-dependent optical and electrical characterization of coupled plasmonic particles, more specifically bowtie antennas in the highly interesting gap range from few nanometers down to zero gap width. The plasmonic break junction experiment is performed in the focus of a confocal microscope. Confocal scanning images and current measurements are simultaneously recorded and exhibit an increased current when the laser is focused in the proximity of the junction. This setup offers a flexible platform for further correlated optoelectronic investigations of coupled antennas or junctions bridged by nanomaterials.


2008 ◽  
Vol 47 (11) ◽  
pp. 8317-8320
Author(s):  
Takaaki Hirokane ◽  
Naoto Yoshii ◽  
Tatsuya Okazaki ◽  
Shinichi Urabe ◽  
Kazuo Nishimura ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman ◽  
Qin Tan ◽  
Mohammad Mazharul Karim ◽  
Muhammad Adnan ◽  
Weixiao Yin ◽  
...  

Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including C. fructicola and C. siamense, is a devastating disease of peach. The chemical control has been widely used for years and management failures have increased towards commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance and 26 % were low resistant, all of the C. siamense isolates were low resistant. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin, even they are members of the same quinone outside inhibitor (QoI) fungicide group, and between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for mycelial growth rates were detected between highly resistant and low-resistant isolates of C. fructicola. Molecular characterization of Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the current resistance status of C. fructicola and C. siamense to different fungicides and their future perspectives. Demethylation inhibitor (DMI) fungicides are the best option among different chemicals to control peach anthracnose in China.


2020 ◽  
Vol 20 (5) ◽  
pp. 3283-3286 ◽  
Author(s):  
Yuehua An ◽  
Xia Shen ◽  
Yuying Hao ◽  
Pengfei Guo ◽  
Weihua Tang

Conductive filament mechanism can explain major resistance switching behaviors. The forming/deforming of the filaments define the high/low resistance states. The ratio of high/low resistance depends on the characterization of the filaments. In many oxide systems, the oxygen vacancies are important to forming the conductive filaments for the resistance switching behaviors. As ultrawide band gap semiconductor, Ga2O3 has very high resistance for its high resistance state, while its low resistive state has relative high resistance, which normally results in low ratio of high/low resistance. In this letter, we report a high ratio of high/low resistance by ultraviolet radiation. The I–V characteristics of Au/Ti/β-Ga2O3/W sandwich structure device shows that the HRS to LRS ratio of 5 orders is achieved.


Sign in / Sign up

Export Citation Format

Share Document