scholarly journals Universal Application of Load Board (L/B) and Socket with Direct Current Tester (DCT) for Various Packages

Author(s):  
Yi-Sheng Lin ◽  
Yu-Hsiang Hsiao ◽  
Pei-Yu Tseng ◽  
Yu-Jen Chang ◽  
Cheng-Hsin Liu ◽  
...  

Abstract We develop a new workflow with O/S tester (Direct Current Tester, DCT) to detect quickly the defect location of failure packages, which can be used in the semiconductor industry for E-FA (Electrical Failure Analysis) fault localization for short, leakage, and open defects. This paper introduces the capability and presents two case studies identifying the defect location of solder balls where DCT with defect mapping function is useful as a non-destructive analysis technique. In this paper, the new methodology and application of DCT on open and short defects in various packages with different sizes have been presented. The experimental results of the design testing program and an intender tooling were verified for the accuracy of the defect mapping function in determining the pin location to defect.

Author(s):  
Yi-Sheng Lin ◽  
Yu-Hsiang Hsiao ◽  
Shu-Hua Lee

Abstract Electro Optical Terahertz Pulse Reflectometry (EOTPR) is an E-FA (Electrical Failure Analysis) technique in the semiconductor industry for non-destructive electrical fault isolation for shorts, leakages and opens. This paper introduces the capability and presents several case studies identifying the physical location of defects where EOTPR is useful as a non-destructive analysis technique. In this paper, the methodology and application of EOTPR on open and short failure isolations in advanced 2.5D IC and wafer level packages (WLP) have been presented. The experimental results of P-FA (Physical Failure Analysis) verify the accuracy of the EOTPR system in determining the distance to defect.


Author(s):  
Jason Wheeler ◽  
Stephen Fasolino

Abstract Time Domain Reflectometry (TDR) is an analysis technique for characterizing a transmission environment (PCB traces, cable assemblies, etc.) and identifying the physical location of defects or impedance discontinuities which can quickly narrow the focus of an investigation. This paper introduces the capability and presents several case studies spanning different applications where TDR was useful as a non-destructive analysis technique.


The Analyst ◽  
2022 ◽  
Author(s):  
Carol PY Lau ◽  
Wenao Ma ◽  
Kwan Yau Law ◽  
Maribel Lacambra ◽  
Kwok Chuen Wong ◽  
...  

Raman spectroscopy is a non-destructive analysis technique that provides detailed information about the chemical structure of the tumor. Raman spectra of 52 giant cell tumor of bone (GCTB), and 21...


2017 ◽  
Vol 59 (12) ◽  
pp. 700-704
Author(s):  
Akira Ohzu ◽  
Masao Komeda ◽  
Masatoshi Kureta ◽  
Yoshiaki Nakatsuka ◽  
Shinichi Nakashima

1983 ◽  
Vol 27 ◽  
pp. 459-466
Author(s):  
Stephen B. Robie ◽  
Ivor L. Preiss

The classification of obsidian artifacts has been receiving considerable attend of changes in obsidian trace element composition can now be identify ancient trade routes. The classification of this glassy volcanic material has been attempted using a variety of elemental analysis technique. The most successful and most widely employed method of non-destructive analysis has been that which employs X-ray fluorescence analysis (XRF); either wavelength dispersive (WDS), or energy dispersive (EDS).


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
Jingjing Xia ◽  
Xiayu Du ◽  
Weixin Xu ◽  
Yun Wei ◽  
Yanmei Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document