Surface Modification of Thermal Sprayed Coatings

Author(s):  
G. John ◽  
T. Troczynski

Abstract Thermal sprayed coatings are frequently used in corrosive environments, even when their major purpose is to provide wear or thermal resistance, rather than corrosion resistance. This includes Thermal Barrier Coatings (TBC), where high porosity is a desired feature to give good thermal protection. However, as this proves to be a limiting factor in the corrosion protection, a trade off is involved. This is because the interconnected porosity in TBCs allows the corrosive media to reach the coating-substrate interface, which eventually leads to delamination of the coatings. This work addresses the problem of permeability of TBCs which can lead to premature delamination due to interfacial corrosion. The coatings studied were yttria-stabilized zirconia TBCs. A simple infiltration technique has been proposed using sol-gel ceramic precursors. The precursors studied include aluminum isopropoxide or pre-hydrolyzed ethyl silicate, which decomposed to alumina and silica respectively, at surface heat treatment temperatures as low as 550°C. In addition to sealing the surface, it is believed that some level of compressive stress is generated on the surface of TBCs on cooling from the processing temperature. Electrochemical tests in 3.0% NaCl have been carried out to study the effectiveness of the sealant. These potentiodynamic tests as well as permeability tests show a considerable decrease in interconnected porosity with sol-gel modifications of the coatings.

Author(s):  
R. Kawase ◽  
A. Nakano

Abstract Thermal sprayed coatings of polypenylene-sulphide (PPS) and polyphenyletherether-ketone (PEEK) have been produced by HVAF spray system. The properties of these coatings have been investigated by corrosion test and FT-IR analysis. The main results of this study are summarized as follows; (1) In case of PPS coatings, PPS powder is oxidized during thermal spraying. However, PPS coatings have a good corrosion resistance. However, PEEK coatings have high porosity so that corrosion of the substrate occurs. (2) In case of PEEK coatings, the molecular structure of PEEK powder is not changed during thermal spraying.


2004 ◽  
Vol 114 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Tao Tong ◽  
Jinggao Li ◽  
Qing Chen ◽  
Jon P. Longtin ◽  
Szymon Tankiewicz ◽  
...  

2021 ◽  
pp. 79-86
Author(s):  
V.G. Babashov ◽  
◽  
N.M. Varrik ◽  

Based on the analysis of recent publications of scientific and technical literature, data on the production of zirconium oxide fibers used for the manufacture of high-temperature thermal insulation materials are presented. Information is provided on various methods of obtaining zirconium oxide fibers (methods of impregnation of the template and molding of the mixture, sol-gel method of spinning a fiber-forming precursor solution), as well as on the technique of fiber molding (manual pulling, dry and wet spinning, blowing and electrospinning). The use of such fibers for the production of thermal insulation materials (felts, cords and blocks) instead of currently existing materials made of aluminum oxide-based fibers can significantly increase the operating temperatures of the thermal protection systems.


2006 ◽  
Vol 87 (2) ◽  
pp. 401-409 ◽  
Author(s):  
G. Vourlias ◽  
N. Pistofidis ◽  
D. Chaliambalias ◽  
K. Chrissafis ◽  
El. Pavlidou ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Mario Ledda ◽  
Marco Fosca ◽  
Angela De Bonis ◽  
Mariangela Curcio ◽  
Roberto Teghil ◽  
...  

In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs’ properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications.


Sign in / Sign up

Export Citation Format

Share Document