Influence of the Variation of Plasma Torch Parameters on Particle Melting and Solidification

Author(s):  
M. Vardelle ◽  
P. Fauchais ◽  
A. Vardelle ◽  
A.C. Léger

Abstract A study of the flattening and cooling of particles plasma-sprayed on a substrate is presented. The characteristic parameters of the splats are linked to the parameters of the impacting particles by using an experimental device consisting of a phase Doppler particle analyzer and a high-speed pyrometer. However, during the long experiments required to get reliable correlations, it was observed that variations in plasma spray operating conditions may alter the particles behavior in the plasma jet. Therefore, a simple and easy-to-use system was developed to control in real time the spray jet. In this paper, the effect of carrier gas flow rate, arc current and powder mass flow rate is investigated. The results on zirconia and alumina powders show the capability of the technique to sense the particle spray position and width.

Author(s):  
Ameen Malkawi ◽  
Ahmed AlAdawy ◽  
Rajesh Kumar V. Gadamsetty ◽  
Rafael Lastra Melo

Abstract Downhole gas compression technology is an artificial lift method that aims to boost production, maximize recovery and delay onset of liquid loading in gas wells. There are different available compression technologies that can be considered for downhole applications, such as screw, scroll, centrifugal and axial compressors. Selection of the appropriate type mainly depends on expected well performance, ambient conditions, compressor operating envelope, technology characteristics, limitations and size constraints. The objective of this study is to perform a feasibility evaluation of compression solutions applicable for a given set of candidate gas wells. Aerodynamic and hydraulic models are used to determine operating conditions, compressor performance, and to select equipment specifications such as impeller diameter, compressor envelope, shaft HP requirement and number of stages among other parameters. A Pugh analysis is performed for all compression technologies and their characteristics to down-select the most suitable solutions for the given set of wells. The results of the analysis indicated an optimal downhole compression technology that covers most of the gas flow rate requirements and meet the performance expectations. The study also provided critical specifications for the compressor, including high-speed operation needed to provide the required flow rates and compression ratio for a relatively small housing diameter. The study also finds that other technologies may be applicable but only to certain population of wells, as the flow rate spectrum is narrower than the optimal solution at the studied conditions. The analysis for the discarded compression technologies in this study showed relatively significant disadvantages for downhole application when compared to the selected compressor. This study presents a holistic analysis for compression technology selection for gas wells that, as per to the understanding of the authors, is unique in the existing literature of gas well applications.


2007 ◽  
Vol 124-126 ◽  
pp. 1549-1552
Author(s):  
Koo Hyun Lee ◽  
K.H. Ye ◽  
S.T. Kim ◽  
Chae Hong Jeon ◽  
Yo Seung Song ◽  
...  

Bond coatings, CoNiCrAlY, are prepared on Inconel 738 substrate by vacuum plasma spray (VPS). Mechanical properties of VPSed CoNiCrAlY coatings are investigated via Taguchi method and L18(21×37)orthogonal arrays to determine the optimal setting and the relationship of experimental variables. Seven parameters were considered as follows: (A) arc current; (B) primary gas flow rate; (C) secondary gas flow rate; (D) stand-off distance; (E) working pressure; (F) carrier gas flow rate (Ar); and (G) powder feeding rate.The effect of carrier gas flow rate on the porosity is determined to be the highest among the parameters investigated. Higher microhardness values are observed for the VPSed coatings as compared to the coatings prepared by conventional high velocity oxygen fuel probably due to low amount of the porosity.


Author(s):  
B. Dussoubs ◽  
P. Fauchais ◽  
A. Vardelle ◽  
M. Vardelle ◽  
N.J. Themelis

Abstract An analysis of a d.c. plasma jet is presented using a three-dimensional commercial fluid dynamics code, ESTET. This code solves the coupled conservation equations of mass, species, momentum and thermal energy equations for a compressible and turbulent fluid in control volume and finite difference formulation. Computations take into account fluid turbulence using a standard k-s model with the Launder and Sharma correction for the laminar zones, e.g. the plasma core. Two series of spraying conditions differing in the total gas flow rate (30 and 60 slm) and the arc current (300 and 600 A, respectively) are computed. The process parameters are independently varied about the nominal operating conditions. The effect of the variation of primary and secondary gas flow rate, effective power and powder carrier gas flow rate on flow fields characteristics, is discussed.


Author(s):  
Romain Lemoine ◽  
Benoit Fillion ◽  
Badie I Morsi

The critical mixing speed for gas entrainment (NCRE), for gas induction (NCRI), induced gas flow rate (QGI) as well as the wavy gas-liquid interfacial area (aWave) of N2 and air were measured in pure toluene and three mixtures of organic liquids (toluene-benzoic acid-benzaldehyde mixtures) under wide ranges of temperatures, T (300-453K), pressures, P (1-15 bar), mixing speeds, N (13.3-23.3Hz) and liquid heights, H (0.171-0.268m) using a 4-liter, see-through agitated autoclave operating as a surface-aeration reactor (SAR) and gas-inducing reactor (GIR).NCRE and NCRI as well as aWave were estimated by analyzing the videos taken with an on-line high-speed Phantom camera through the reactor’s Jerguson windows. In the GIR, QGI was determined using a highly sensitive Coriolis mass flow meter. The Central Composite Statistical Design and analysis technique was used to study the effect of operating conditions on these hydrodynamic parameters.NCRE and NCRI appeared to increase with liquid height and decrease with temperature, whereas, the pressure and gas nature did not significantly affect both parameters. The liquid physicochemical properties were found to strongly affect NCRE and NCRI, and QGI. Increasing mixing speed or decreasing liquid height increased QGI. Increasing temperature or decreasing liquid viscosity initially increased and then decreased QGI. Increasing pressure or gas density on the other hand decreased QGI. Increasing mixing speed and temperature or decreasing liquid height significantly enhanced aWave, as compared to the flat liquid surface. At high pressures, however, lower values of aWave were obtained. Empirical and statistical correlations were also developed to accurately predict NCRE, NCRI, QGI and aWave.


2010 ◽  
Vol 129-131 ◽  
pp. 692-696
Author(s):  
Jian Bing Meng ◽  
Xiao Juan Dong ◽  
Chang Ning Ma

A mathematical model was developed to describe the oscillating amplitude of the plasma arc injected transverse to an external transverse alternating magnetic field. The characteristic of plasma arc under the external transverse alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation of plasma arc were also analyzed. The results show that it is feasible to adjust the shape of the plasma arc by the transverse alternating magnetic field, which expands the region of plasma arc thermal treatment upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flow rate, more arc current, and less standoff cause the oscillating amplitude to decrease. The researches have provided a deeper understanding of adjusting of plasma arc characteristics.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2667-2687
Author(s):  
Zhipeng Xu ◽  
Feipeng Xu ◽  
Dailiang Xie

Piston prover has been widely used as a gas flow standard for its advantages of high accuracy in standard volume, flow stability and repeatability. It has also been employed as the primary gas flow standard in many countries to calibrate meters. However, it is difficult to ensure the uniformity of the inside dimension of the piston, thus the application of conventional piston provers are limited by the maximum calibration flow generated by the piston cylinder volume. In this paper, an improved piston gas prover that mainly consists of two uniform plungers was proposed. Their external diameter constitutes the flow standard. The plungers are driven by servo motor, and the high speed fieldbus EtherCAT has been introduced as the control unit. Hence the two pistons could work collaboratively and operate in three modes: single-piston mode, double-pistons parallel mode, and double-pistons reciprocating mode. Besides generating steady-flow rate, the double-plunger prover can even produce an unsteady-flow rate which could be used to research the dynamic characteristics of flow meters. The structure and working principle of the three modes were carefully introduced. Then experiments for calibrating critical nozzles were carried out, and the results show that the repeatability of the discharge coefficient could be better than 0.06%, and the pressure fluctuation during the process was less than 50 Pa.


2013 ◽  
Vol 34 (4) ◽  
pp. 187-197 ◽  
Author(s):  
Andrzej Kacprzak ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m−2) was obtained for temperature 773 K and air flow rate 8.3×106 m3s−1. Itwas shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.


Sign in / Sign up

Export Citation Format

Share Document